Преобразователь напряжения для люминесцентной лампы. Резонансный преобразователь напряжения для лдс Простой преобразователь для питания лдс схема

Тимофей Носов

Преобразователь 12-220 из компьютерного БП для питания ЛДС

Преобразователь также используется для питания «экономичных» ЛДС цокольного типа; он собственно собирался с целью автономного, яркого и экономичного освещения дома, гаража, салона авто. Для себя я принял решение не собирать электронный баласт а использовать готовый, т.к. соотношение геморрой-результат был в пользу готовых решений (всё равно, что в наш век делать на коленках лампу накаливания).

Краткие комментарии схемы. Это двухтактный импульсный преобразователь, собранный на ШИМ-контроллере TL494 (полный отечественный аналог 1114ЕУ4), что позволяет сделать схему довольно простой. На выходе стоят высокоэффективные выпрямительные диоды удваивающие напряжение по схеме Делона или Грайнмахера (не хотел ругаться). На выходе, разумеется, постоянное напряжение. Для электронных балластов постоянное напряжение и полярность включения не актуальна, т.к. в схеме балласта на входе стоит диодный мост (правда диоды там не такие «шустрые» как в нашем преобразователе).

В преобразователе используется готовый высокочастотный понижающий трансформатор из блока питания (БП) компьютера, но в нашем преобразователе он станет наоборот повышающим. Понижающий трансформатор можно взять как из AT так и из ATX БП. Из моей практики трансформаторы отличались только габаритами, а расположение выводов совпадало. Убитый БП (или трансформатор из него) можно найти в любой мастерской по ремонту компьютеров.

Трансформатор можно и самостоятельно намотать. Лично моего терпения сейчас хватает вручную намотать не более 20 витков, хотя в детстве мог намотать для транзисторного приемника контурную катушку в 100 витков; годы берут своё.

Итак, находим подходящее ферритовое кольцо (внешний диаметр примерно 20-30 мм). Соотношение витков примерно 1:1:20 , где 1:1 – две половинки первичной обмотки (10+10 витков), а:20 – соответственно, вторичная 200 витков. Сначала мотается вторичная – равномерно 200 витков проводом диаметром 0,3-0,4 мм. Затем равномерно две половинки первичной обмотки (мотаем 10 витков, делаем средний отвод, затем в том же направлении мотаем оставшиеся 10 витков). Для полуобмоток использую многожильный, серебреный монтажный провод диаметром 0,8 мм (можно не загоняться и использовать другой провод, но лучше многожильный и мягкий).

Предлагаю еще вариант изготовления (переделки) трансформатора. Вы можете приобрести т.н. электронный трансформатор для 12 вольтовых галогенных ламп подсветки потолков и мебели (в магазинах светового оборудования стоит от 80 руб). В нем стоит подходящий трансформатор на кольце. Нужно только снять вторичную обмотку, которая представляет собой десяток витков. А полуобмотки можно намотать иначе – кусок провода (длину рассчитаете) складываем вдвое и мотаем вдвое сложенным проводом; середину провода (место перегиба) разрезаем – получаем т.н. два конца (или два начала) обмоток. К концу одного провода припаиваем начало другого – получаем общую точку полуобмоток. Уверяю, у меня такой трансформатор работает. Необходимо отметить, что компьютерный трансформатор великолепно работает в схеме электронного трансформатора .

Для тех кто желает теории расчетов – раздел Софт-Полезности и Программа расчета трансформатора импульсного блока питания V1.03 (838 Kb) ; в ней всё доходчиво расписано. Частота преобразования около 100 кГц (расчет рабочей частоты см. в документации на TL494).

C1 – это 1 нанофарад, или 1000 пикофарад, или 0,001 микрофарад (все варианты величины емкости равны между собой); на корпусе кодировка 102; я ставил 152 – работает, но, предполагаю, что на меньшей частоте.

R1 и R2 – задают ширину импульсов на выходе. Схему можно упростить и не ставить эти элементы, при этом 4й контакт TL494 посадить на минус; я не вижу нужды широкими импульсами насиловать транзисторы.

R3 (совместно с C1) задаёт рабочую частоту. Уменьшаем сопротивление R1 – увеличиваем частоту. Увеличиваем емкость C1 – уменьшаем частоту. И наоборот.

Транзисторы – мощные МОП (металл-окисел-полупроводник) полевые транзисторы , которые характеризуются меньшим временем срабатывания и более простыми схемами управления. Одинаково хорошо работают IRFZ44N, IRFZ46N, IRFZ48N (чем больше цифра – тем мощнее и дороже).

В преобразователе применены диоды HER307 (подойдут 304, 305, 306-е). Отлично работают отечественные КД213 (дороже, габаритнее и менее надежно).

Конденсаторы на выходе можно и меньшей емкости, но с рабочим напряжением 200 В. Использованы конденсаторы из того же компьютерного БП диаметром не более 18 мм (либо редактируйте рисунок печатной платы).

Микросхему установите на панель; так будет легче жить.

Налаживание сводится к внимательной установке микросхемы в панель. Если не работает, проверьте наличие подводимого напряжения 12 В. Проверьте R1 и R2, не перепутали? Всё должно работать.

Радиатор не нужен, т.к. продолжительная работа не вызывает ощутимый нагрев транзисторов. А если возникнет желание поставить на радиатор, то, внимание, фланцы корпусов транзисторов не закорачивать через радиатор. Используйте изоляционные прокладки и шайбы втулки от компьютерного БП. Для первого пуска радиатор не помешает; по крайней мере транзисторы сразу не сгорят в случае ошибок монтажа или КЗ на выходе, или при «случайном» подключении лампы накаливания на 220 в.

Питание схемы должно быть убедительным, т.к. потребляемый ток одного экземпляра «экономичной» ЛДС от герметичного кислотного аккумулятора у меня составил 1,4 А при напряжении 11,5 В; итого 16 Вт (хотя на упаковке лампы написано 26 Вт).

Защиту схемы от перегрузки и переплюсовки можно реализовать через предохранитель и диод на входе.

Будьте осторожны! На выходе схемы высокое напряжение и очень серьезно может ударить. Потом не говорите, что не предупреждал. Конденсаторы держат заряд больше суток – проверено на людях. Разрядных цепей на выходе нет. Закорачивание не допускается, разряжайте либо лампой накаливания на 220 В, либо через сопротивление на 1 мОм.

Для преобразователя сделано два рисунка печатной платы, в зависимости от габаритов трансформатора.

Ю. БОРОДАТЫЙ, Р. КОТУРБАТ, с. Ривна, Ивано-Франковской обл.

Резонансный преобразователь напряжения отличается от импульсных и квазирезонансных преобразователей очень низкими потерями на переключательных транзисторах (1...2% от преобразуемой мощности). Его можно использовать для питания ламп дневного света (ЛДС) . Отсутствие стабилизатора дает возможность питать любые ЛДС, в том числе и с перегоревшими пусковыми спиралями.

Главной задачей при конструировании устройства было использование готового трансформатора от лампового телевизора ТС-180 (ТС-180-2), так как очень не хотелось заниматься изготовлением моточных узлов. Второй принцип, заложенный в самоделку - простота, так как это обеспечивает конструкции высокую надежность и ремонтопригодность

Схема (рис.1а) предназначена для питания ЛДС от аккумулятора и его зарядки от сети. Можно использовать даже аккумуляторы с одной закороченной банкой при увеличении емкостей С1 и С2 до 0,5 мкФ.

Для зарядки аккумулятора переключатель SA1 устанавливается в верхнее по схеме положение. Напряжение сети с трансформатора Т1 через диоды VD1 ...VD4 прикладывается к аккумулятору. При переходе в рабочий режим (питание ЛДС) SA1 устанавливается в нижнее по схеме положение. Иногда для запуска очень старых ламп требуется схема, повышающая потенциал базы VT1 иVТ2(рис.1б).

Преобразователь напряжения состоит из двух блокинг-генераторов, работающих синхронно. Контур, образованный емкостью базовых переходов транзисторов и обмоткой трансформатора, входит в резонанс с другим контуром, образованным емкостью лампы и вторичной обмоткой. Частота резонансных колебаний - 100...150 кГц. Уменьшив емкость конденсаторов до 0,1 мкФ, используя всего одну (можно с КЗ в витках!) катушку, можно сделать преобразователь по схеме, показанной на рис.2.

Детали. Транзисторы в схемах должны быть только мощные, в металлических корпусах, например КТ805. При повышении напряжения питания свыше 12,8 В КПД схемы несколько уменьшается, что приводит к нагреву транзисторов. В схеме, приведенной на рис.1, транзисторы и соответствующие им диоды можно расположить на двух радиаторах. Другие два диода можно прикрутить непосредственно к шасси. Нагрев транзисторов можно снизить уменьшением емкости конденсаторов, что облегчает запуск лампы, но снижает ее яркость свечения. В качестве HL1 используется любая лампа дневного света (6...40 Вт). Если конденсаторы греются, замените их на более качественные, с меньшей утечкой. Схемы некритичны к деталям.

В качестве Т1, кроме ТС-180, можно применить ТС-160 и другие аналогичные трансформаторы. При использовании только одной пустой катушки (рис.2) заполнять ее ферритовым "ломом", как описано в , не требуется. Транзисторы могут быть и p-n-р проводимости, если поменять полярность диодов и батареи.

Литература

1. Коновалов Е. Квазирезонансный преобразователь напряжения. - Радио, 1996, N2, С.52.
2. Бородатый Ю. Дневное от аккумулятора. - Дом, сад, огород, 1998. N4.
3. Бородатый Ю. Дневное от аккумулятора. - Электрик, 2000, N4.

  • 20.09.2014

    Триггер — это уст-во с двумя устойчивыми состояниями равновесия, предназначенные для записи и хранения информации. Триггер способен хранить 1 бит данных. Условное обозначение триггера имеет вид прямоугольника, внутри которого пишется буква Т. Слева к изображению прямоугольника подводятся входные сигналы. Обозначения входов сигнала пишутся на дополнительном поле в левой части прямоугольника. …

  • 21.09.2014

    Однотактовый выходной каскад лампового усилителя содержит минимум деталей и прост в сборке и регулировке. Пентоды в выходном каскаде могут использоваться только ультралинейном включении, триодном или обычном режимах. При триодном включении экранирующая сетка соединяется с анодом через резистор 100…1000Ом. В ультралинейном включении каскад охвачен ОС по экранирующей сетке, что дает снижение …

  • 04.05.2015

    На рисунке показана схема простого инфракрасного пульта и приемника исполнительным элементом которого является реле. Из-за простоты схемы пульта уст-во может выполнять только два действия, это включить реле и выключить его отпустив кнопку S1, что может быть достаточно для определенных целей (гаражные ворота, открывание электромагнитного замка и др.). Настройка схемы очень …

  • 05.10.2014

    Схема выполнена на сдвоенном ОУ TL072. На А1.1 сделан предварительный усилитель с коэф. усиления заданным отношением R2\R3. R1-регулятор громкости. На ОУ А1.2 выполнен активный трех полосовой мостовой регулятор тембра. Регулировки осуществляются переменными резисторами R7R8R9. Коэф. передачи этого узла 1. Наряженные питания предварительного УНЧ может быть от ±4В до ±15В Литература …


Данная схема была взята из журнала Радиохобби №3 за 1999 год и представляет собой повышающий преобразователь напряжения, построенный по принципу блокинг-генератора. Генерация осуществляется за счет положительной обратной связи, управляющей работой ключевого транзистора. При этом на вторичной обмотке трансформатора генерируются коротковременные высоковольтные импульсы. В момент включения преобразователя лампа дневного света имеет высокое сопротивление, напряжение на ее электродах возрастает до 500 вольт, но как только лампа прогреется, напряжение снизится до 50 – 70 вольт. Поэтому крайне важно не включать преобразователь без нагрузки, поскольку напряжение на нем может вырасти до 1000 вольт, что способно вывести из строя трансформатор.


На рисунке показаны две схемы, верхняя - для транзистора структуры p-n-p, нижняя - для транзистора n-p-n. Естественно, что при смене структуры транзистора меняется также полярность конденсатора С1.

Трансформатор изготавливается на Ш-образном феррите 7х7 с магнитной проницаемостью НМ2000. Первой мотается вторичная обмотка, по схеме она подключается к ЛДС. Она содержит 240 витков, намотанных проводом ПЭВ-0,23. После чего обмотка хорошо изолируется и поверх нее мотаются обмотка коллектора – это 22 витка, намотанных проводом ПЭВ-0,56 и базовая обмотка, которая содержит 6 витков, намотанных проводом ПЭВ-0,23. Естественно, что диаметры проводов могут в небольших пределах варьироваться. Необходимый для изготавливаемого трансформатора сердечник можно раздобыть в старом дисковом телефонном аппарате, например ТА-68. Тогда с его каркаса необходимо предварительно удалить все старые обмотки. Также Ш-образный сердечник подходящего сечения магнитопровода можно взять из компьютерного блока питания. Важно! Между половинками Ш-образного сердечника необходим зазор – прокладка из немагнитного материала. Подойдет лист тонкой бумаги, один слой изоленты и т.п. Необходимо это для того, чтобы сердечник не намагнитился, иначе преобразователь через непродолжительное время перестанет работать.

Для правильной работы схемы необходимо настроить потребляемый преобразователем ток. Для этого необходимо знать мощность применяемой ЛДС. Допустим, ее мощность 20 ватт. Тогда потребляемый преобразователем ток должен быть 20Ватт/12в=1,66А. Такой ток выставляется подбором базового резистора R1.

Транзистор Т1 необходимо поместить на радиатор. Площадь радиатора выбирается таким образом, чтобы после часа работы за него можно было бы спокойно держаться. Вместо транзисторов КТ837Ф и КТ805БМ можно применить КТ818 и КТ819 соответственно.

Проверяется работоспособность преобразователя следующим образом. Если сразу после включения преобразователя лампа загорелась тускло, а через долю секунды разгорелась в полную силу, значит все работает нормально. Если же лампа продолжает работать тускло, значит необходимо подбирать R1, или даже менять транзистор. Провода от трансформатора до лампы должны быть как можно толще и короче, иначе лампа будет зажигаться плохо, или не зажигаться совсем.

А теперь немного фотографий.

Предлагаемый преобразователь прост в повторении, не содержит дорогих и дефицитных деталей и в состоянии запитать люминесцентную лампу (ЛДС) мощностью до 18 Вт. После серии экспериментов был выбран вариант из двух ламп по 6 Вт – он оказался наиболее экономичным в отношении потребляемая мощность/яркость.

Преобразователь представляет собой классический блокинг-гененатор, собранный на транзисторе VT3 и трансформаторе Т1, который одновременно является и повышающим. В качестве нагрузки трансформатора используются две люминесцентные шестиваттные лампы TS F6T5. Диод VD1 защищает схему от неправильного подключения к аккумулятору – переполюсовки.

Узел, собранный на транзисторах VT1VT2 служит для визуального контроля состояния аккумуляторной батареи – если напряжение на ней упадет ниже критического, зажжется светодиод HL1 «Аккумулятор разряжен». В режиме ожидания узел потребляет ток около 1 мА, при срабатывании — 5 мА. Если контроль за состоянием батареи не нужен, то от этого узла (VT1, VT2, R1 – R5, С1, HL1) можно отказаться. Такой вариант сильно упростит схему преобразователя.

В конструкции можно использовать резисторы МЛТ, R2 лучше (но не обязательно) взять многооборотный СП5-3. С2 – К73-9, С1 – любой. На месте VT1 и VT2 будут работать КТ3102 или КТ315 с любой буквой. VD1 должен выдерживать ток, потребляемый преобразователем, который зависит от мощности используемой лампы. В качестве VT3 испытывались КТ815, КТ817 и КТ819. Последний с буквой «Г» оказался оптимальным, тем более, он имеет хороший запас по напряжению, что будет нелишним при случайном отключении лампы.

Импульсный трансформатор Т1 выполнен на магнитопроводе Б22 из феррита 2000НМ1. Первичная (I) обмотка содержит 9 витков провода ПЭВ-2 0.45 мм. Вторичная (II) – 10 витков того же провода, но диаметром 0.3 мм. Обе обмотки наматываются одновременно виток к витку. Обмотка III наматывается последней после двух слоев изоляции бумагой. Для одной лампы обмотка содержит 180, а для двух, соединенных последовательно, как изображено на схеме, — 240-250 витков провода ПЭВ-2 диаметром 0.16 мм.

Вся катушка после намотки пропитывается парафином и помещается в магнитопровод. Во время сборки магнитопровода между чашками нужно оставить зазор 0.2 мм – это толщина листа бумаги. При сборке устройства следует соблюдать фазировку обмоток I и II. Если после первого включения схема не заработает, то выводы одной из этих обмоток нужно поменять местами.

Далее регулировкой номинала резистора R6 добиваются приемлемой яркости свечения ламп, учитывая, что вместе с яркостью растет и потребляемый от аккумулятора ток. У автора достаточная яркость достигалась при потребляемом токе 650 мА, а предел тока при регулировки R6 при устойчивой работе генератора – 0.2 – 1.2 А

Перед включением и во время эксплуатации светильника обязательно следите за хорошим контактом проводов, соединяющих лампы с трансформатором. Даже кратковременная потеря контакта грозит пробоем транзистора VT3 и высоковольтной обмотки Т1.

В завершении хочется обратить внимание на то, что в конструкции могут работать лампы и со сгоревшими спиралями.