Применение электрических полей для выращивания растения. Овощи на электричестве, электрогрядка, стимулятор роста растений, высокая грядка, электро грядка, огород без забот, атмосферное электричество, свободное электричество, электростимуляция роста растен

Маркевич В.В.

В данной работе мы обращаемся к одному из самых интересных и перспективных направлений исследований – влиянию физических условий на растения.

Изучая литературу по данному вопросу, я узнал, профессору П. П. Гуляеву с помощью высокочувствительной аппаратуры удалось установить, что слабое биоэлектрическое поле окружает любое живое и еще точно известно: каждая живая клетка имеет свою собственную электростанцию. И клеточные потенциалы не так уж малы.

Скачать:

Предварительный просмотр:

ФИЗИКА

БИОЛОГИЯ

Растения и их электрический потенциал.

Выполнил: Маркевич В.В.

ГБОУ ООШ № 740 г. Москва

9 класс

Руководитель: Козлова Виолетта Владимировна

учитель физики и математики

г. Москва 2013

  1. Введение
  1. Актуальность
  2. Цели и задачи работы
  3. Методы исследования
  4. Значимость работы
  1. Анализ изученной литературы по теме «Электричество в жизни

растений»

  1. Ионизация воздуха в помещении
  1. Методика и техника исследования
  1. Исследование токов повреждения у различных растений
  1. Эксперимент №1 (с лимонами)
  2. Эксперимент №2 (с яблоком)
  3. Эксперимент №3 (с листом растения)
  1. Исследование влияния электрического поля на прорастание семян
  1. Эксперименты по наблюдению влияния ионизованного воздуха на прорастание семян гороха
  2. Эксперименты по наблюдению влияния ионизованного воздуха на прорастание семян бобов
  1. Выводы
  1. Заключение
  2. Литература
  1. Введение

«Как ни удивительны электрические явления,

присущие неорганической материи, они не идут

ни в какое сравнение с теми, которые связаны с

жизненными процессами».

Майкл Фарадей

В данной работе мы обращаемся к одному из самых интересных и перспективных направлений исследований – влиянию физических условий на растения.

Изучая литературу по данному вопросу, я узнал, профессору П. П. Гуляеву с помощью высокочувствительной аппаратуры удалось установить, что слабое биоэлектрическое поле окружает любое живое и еще точно известно: каждая живая клетка имеет свою собственную электростанцию. И клеточные потенциалы не так уж малы. Например, у некоторых водорослей они достигают 0,15 В.

«Если 500 пар половинок горошин собрать в определенном порядке в серии, то конечное электрическое напряжение составит 500 вольт… Хорошо, что повар не знает об опасности, которая ему угрожает, когда он готовит это особенное блюдо, и к счастью для него, горошины не соединяются в упорядоченные серии». Это высказывание индийского исследователя Дж. Босса базируется на строгом научном эксперименте. Он соединял внутренние и внешние части горошины с гальванометром и нагревал до 60°С. Прибор при этом показывал разность потенциалов 0,5 В.

Каким образом это происходит? На каком принципе работают живые генераторы и батареи? Заместитель заведующего кафедрой живых систем Московского физико-технического института кандидат физико-математических наук Эдуард Трухан считает, что один из самых главных процессов, протекающих в клетке растения, - процесс усвоения солнечной энергии, процесс фотосинтеза.

Так что, если в тот момент ученым удастся «растащить» положительно и отрицательно заряженные частицы в разные стороны, то, по идее, мы получим в свое распоряжение замечательный живой генератор, топливом для которого служили бы вода и солнечный свет, а кроме энергии, он бы еще производил и чистый кислород.

Возможно, в будущем такой генератор и будет создан. Но для осуществления этой мечты ученым придется немало потрудиться: нужно отобрать наиболее подходящие растения, а может быть, даже научиться изготавливать хлорофилловые зерна искусственно, создать какие-то мембраны, которые бы позволили разделять заряды. Оказывается, живая клетка, запасая электрическую энергию в природных конденсаторах – внутриклеточных мембранах особых клеточных образований, митохондрий, потом использует ее для произведения очень многих работ: строительства новых молекул, затягивания внутрь клетки питательных веществ, регулирования собственной температуры… И это еще не все. С помощью электричества производит многие операции и само растение: дышит, движется, растет.

Актуальность

Уже сегодня можно утверждать: изучение электрической жизни растений несет пользу сельскому хозяйству. Еще И. В. Мичурин проводил опыты по влиянию электрического тока на прорастание гибридных сеянцев.

Предпосевная обработка семян – важнейший элемент агротехники, позволяющий повышать их всхожесть, а в конечном итоге – урожайность растений.А это особенно важно в условиях нашего не очень длинного и теплого лета.

  1. Цели и задачи работы

Целью работы является исследование наличия биоэлектрических потенциалов у растений и исследование влияния электрического поля на прорастание семян.

Для достижения цели исследования необходимо решить следующие задачи :

  1. Изучение основных положений, касающихся учения о биоэлектрических потенциалах и влияния электрического поля на жизнедеятельность растений.
  2. Проведение экспериментов по обнаружению и наблюдению токов повреждения у различных растений.
  3. Проведение экспериментов по наблюдению влияния электрического поля на прорастание семян.
  1. Методы исследования

Для выполнения задач исследования используется теоретический и практический методы. Теоретический метод: поиск, изучение и анализ научной и научно-популярной литературы по данному вопросу. Из практических методов исследования используется: наблюдение, измерение, проведение экспериментов.

  1. Значимость работы

Материал данной работы может быть использован на уроках физики и биологии, так как в учебниках этот важный вопрос не освещается. А методика проведения экспериментов – как материал для практических занятий элективного курса.

  1. Анализ изученной литературы

История исследования электрических свойств растений

Один из характерных признаков живых организмов – способность к раздражению.

Чарльз Дарвин придавал важное значение раздражимости растений. Он детально изучил биологические особенности насекомоядных представителей растительного мира, отличающихся высокой чувствительностью, и результаты исследований изложил в замечательной книге «О насекомоядных растениях», вышедшей в свет в 1875 году. Кроме того, внимание великого натуралиста привлекли различные движения растений. В совокупности все исследования наводили на мысль, что растительный организм удивительно схож с животным.

Широкое использование электрофизиологических методов позволило физиологам животных достичь значительного прогресса в этой области знаний. Было установлено, что в организмах животных постоянно возникают электрические токи (биотоки), распространение которых и приводит к двигательным реакциям. Ч. Дарвин предположил, что сходные электрические явления имеют место и в листьях насекомоядных растений, обладающих довольно сильно выраженной способностью к движению. Однако сам он не проверял эту гипотезу. По его просьбе эксперименты с растением Венерина мухоловка были проведены в 1874 году физиологом Оксфордского университета Бурданом Сандерсоном . Подсоединив лист этого растения к гальванометру, ученый отметил, что стрелка тотчас же отклонилась. Значит, в живом листе этого насекомоядного растения возникают электрические импульсы. Когда исследователь вызвал раздражение листьев, прикоснувшись к расположенным на их поверхности щетинкам, стрелка гальванометра отклонилась в противоположную сторону, как в опыте с мышцей животного.

Немецкий физиолог Герман Мунк , продолживший опыты, в 1876 году пришел к заключению, что листья венериной мухоловки в электромоторном отношении подобны нервам, мускулам и электрическим органам некоторых животных.

В России электрофизиологические методы были использованы Н. К. Леваковским для изучения явлений раздражимости у стыдливой мимозы. В 1867 году он опубликовал книгу под названием «О движении раздражимых органов растений». В экспериментах Н. К. Леваковского самые сильные электрические сигналы наблюдались в тех экземплярах мимозы , которые наиболее энергично отвечали на внешние раздражители. Если мимозу быстро убить нагреванием, то мертвые части растения не вырабатывают электрических сигналов. Возникновение электрических импульсов автор наблюдал также в тычинках бодяка и чертополоха, в черешках листьев росянки. Впоследствии было установлено, что

Биоэлектрические потенциалы в клетках растений

Жизнь растений связана с влагой. Поэтому электрические процессы в них наиболее полно проявляются при нормальном режиме увлажнения и затухают при увядании. Это связано с обменом зарядами между жидкостью и стенками капиллярных сосудов при протекании питательных растворов по капиллярам растений, а также с процессами обмена ионами между клетками и окружающей средой. Важнейшие для жизнедеятельности электрические поля возбуждаются в клетках.

Итак‚ нам известно‚ что…

  1. Несомая ветром цветочная пыльца имеет отрицательный заряд ‚ приближающийся по величине к заряду пылинок при пылевых бурях. Вблизи теряющих пыльцу растений резко изменяется соотношение между положительными и отрицательными легкими ионами‚ что благоприятно сказывается на дальнейшем развитии растений.
  2. В практике распыления ядохимикатов в сельском хозяйстве выяснено‚ что на свеклу и яблоню в большей мере осаждаются химикаты с положительным зарядом‚ на сирень - с отрицательным.
  3. Одностороннее освещение листа возбуждает электрическую разность потенциалов между освещенными и неосвещенными его участками и черешком‚ стеблем и корнем. Эта разность потенциалов выражает реакцию растения на изменения в его организме‚ связанные с началом или прекращением процесса фотосинтеза.
  4. Прорастание семян в сильном электрическом поле (например‚ вблизи коронирующего электрода) приводит к изменениям высоты и толщины стебля и густоты кроны развивающихся растений. происходит это в основном благодаря перераспределению в организме растения под влиянием внешнего электрического поля объемного заряда.
  5. Поврежденное место в тканях растений всегда заряжается отрицательно относительно неповрежденных участков‚ а отмирающие участки растений приобретают отрицательный заряд по отношению к участкам‚ растущим в нормальных условиях.
  6. Заряженные семена культурных растений имеют сравнительно высокую электропроводность и поэтому быстро теряют заряд. Семена сорняков ближе по своим свойствам к диэлектрикам и могут сохранять заряд длительное время. Это используется для отделения на конвейере семян культурных растений от сорняков.
  7. Значительные разности потенциалов в организме растений возбуждаться не могут ‚ поскольку растения не имеют специализированного электрического органа. Поэтому среди растений не существует «древа смерти»‚ которое могло бы убивать живые существа своей электрической мощностью.

Влияние атмосферного электричества на растения

Одна из характерных особенностей нашей планеты – наличие постоянного электрического поля в атмосфере. Человек не замечает его. Но электрическое состояние атмосферы не безразлично для него и других живых существ, населяющих нашу планету, включая растения. Над Землей на высоте 100-200 км, существует прослойка из положительно заряженных частиц – ионосфера.
Значит, когда идешь по полю, улице, скверу, то движешься в электрическом поле, вдыхаешь электрические заряды .

Влияние атмосферного электричества на растения исследовалось с 1748 года многими авторами. В этом году аббат Нолет сообщал об экспериментах, в которых он электризовал растения, поместив их под заряженные электроды. Он наблюдал ускорение прорастания и роста. Грандиеу (1879) наблюдал, что растения, которые не подвергались влиянию атмосферного электричества, так как были помещены в проволочный сеточный заземленный ящик, показали уменьшение веса на 30 – 50% по сравнению с контрольными растениями.

Лемстрем (1902) подвергал растения действию ионов воздуха, располагая их под проволокой, снабженной остриями и подключенной к источнику высокого напряжения (1 м над уровнем земли, ток ионов 10 -11 – 10 -12 А/см 2 ), и он нашел увеличение в весе и длине больше, чем на 45% (например, морковь, горох, капуста).

Тот факт, что рост растений ускорялся в атмосфере с искусственно увеличенной концентрацией положительных и отрицательных малых ионов недавно подтвердился Круегером и его сотрудниками. Они нашли, что семена овса реагировали на положительные, а также отрицательные ионы (концентрация около 10 4 ионов/см 3 ) увеличением на 60% общей длины и увеличением свежего и сухого веса на 25-73%. Химический анализ надземных частей растений обнаружил увеличение содержание протеина, азота и сахара. В случае ячменя имело еще большее увеличение (приблизительно на 100%) в общем удлинении; увеличение в свежем весе не было большим, но существовало заметное увеличение в сухом весе, которое сопровождалось соответствующим увеличением содержания протеина, азота и сахара.

Эксперименты с семенами растений также проводил Ворден. Он нашел, что прорастание зеленых бобов и зеленого горошка становилось более ранним при увеличении уровня ионов любой полярности. Конечное процентное отношение проросших семян было более низким при отрицательной ионизации по сравнению с контрольной группой; прорастание в положительно ионизированной группе и контрольной было одинаковым. По мере роста сеянцев контрольные и положительно ионизированные растения продолжали свой рост, в то время как растения, подвергавшиеся отрицательной ионизации, в большинстве чахли и погибали.

Влияние в последние годы произошло сильное изменение электрического состояния атмосферы; различные районы Земли стали отличаться друг от друга по ионизированному состоянию воздуха, которое обусловлено его запыленностью, загазованностью и т.д. Электрическая проводимость воздуха – чуткий индикатор его чистоты: чем больше в воздухе посторонних частиц, тем больше число ионов оседает на них и, следовательно, меньше становится электропроводимость воздуха.
Так, в Москве в 1 см 3 воздуха содержится 4 отрицательных заряда, в Санкт-Петербурге – 9 таких зарядов, в Кисловодске, где эталон чистоты воздуха – 1,5 тыс. частиц, а на юге Кузбасса в смешанных лесах предгорья количество этих частиц доходит до 6 тысяч. Значит, где больше отрицательных частиц, там легче дышится, а где пыль – человеку достается их меньше, так как пылинки оседают на них.
Хорошо известно, что возле быстро текущей воды воздух освежает и бодрит. В нем много отрицательных ионов. Еще в XIX веке было определено, что более крупные капли в брызгах воды заряжены положительно, а капли поменьше – отрицательно. Поскольку большие капли оседают быстрее, в воздухе остаются отрицательно заряженные маленькие капельки.
Наоборот, воздух в тесных помещениях с обилием разного рода электромагнитных приборов насыщен положительными ионами. Даже сравнительно непродолжительное нахождение в таком помещении приводит к заторможенности, сонливости, головокружениям и головным болям.

  1. Методика проведения исследования

Исследование токов повреждения у различных растений.

Инструменты и материалы

  • 3 лимона, яблоко, помидор, лист растения;
  • 3 блестящих медных монеты;
  • 3 оцинкованных винта;
  • провода, желательно с зажимами на концах;
  • небольшой нож;
  • несколько клеящихся листочков;
  • низковольтный светодиод 300мВ;
  • гвоздь или шило;
  • мультиметр.

Эксперименты по обнаружению и наблюдению токов повреждения у растений

  1. Техника выполнения эксперимента № 1. Ток в лимонах.

  1. Прежде всего, помяли все лимоны. Это делается для того, чтобы внутри лимона появился сок.
  2. Вкрутили в лимоны оцинкованный винт приблизительно на треть его длины. При помощи ножа осторожно вырезали в лимоне небольшую полосу - на 1/3 его длины. Вставили в щель в лимоне медную монету таким образом, чтобы половина ее осталась снаружи.
  3. Вставили таким же образом винты и монеты в другие два лимона. Затем подключили провода и зажимы, соединили лимоны таким образом, чтобы винт первого лимона подключался к монете второго и т.д. Подключили провода к монете из первого лимона и винту из последнего. Лимон работает как батарейка: монета - положительный (+) полюс, а винт - отрицательный (-). К сожалению, это очень слабый источник энергии. Но его можно усилить, соединив несколько лимонов.
  4. Подключили положительный полюс диода к положительному полюсу батареи, подключили отрицательный полюс. Диод горит!!!
  1. Со временем напряжение на полюсах лимонной батареи уменьшится. Заметили, насколько хватит лимонной батареи. Через некоторое время лимон потемнел возле винта. Если удалить винт и вставить его же (или новый) в другое место лимона, то можно частично продлить срок работы батареи. Можно еще попробовать помять батарею, время от времени передвигая монеты.
  1. Провели эксперимент с большим количеством лимонов. Диод стал светиться ярче. Батарея теперь работает дольше.
  2. Использовали кусочки цинка и меди большего размера.
  3. Взяли мультиметр, измерили напряжение батареи.

№ п/п

Количество лимонов

Разность потенциалов

1(без меди и цинка)

0,14 В

0,92 В

0,3 В

Техника выполнения эксперимента № 2. Ток в яблоках.

  1. Яблоко разрезали пополам, удалили сердцевину.
  2. Если оба электрода, отведенных к мультиметру, приложить к наружной стороне яблока (кожуре), мультиметр не зафиксирует разности потенциалов.
  3. Один электрод перенесли во внутреннюю часть мякоти, и мультиметр отметит появление тока повреждения.
  4. Проведем эксперимент с овощами - томатами.
  5. Результаты измерений поместили в таблицу.

№ п/п

Условия проведения

Разность потенциалов

Оба электрода на кожуре яблока

0 В

Один электрод на кожуре,

другой – в мякоти яблока

0,21 В

Электроды в мякоти разрезанного яблока

0‚05 В

Электроды в мякоти помидора

0‚02 В

Техника выполнения эксперимента № 3. Ток в срезанном стебле.

  1. Отрезали лист растения со стеблем.
  2. Измерили токи повреждения у срезанного стебля на различном расстоянии между электродами.
  3. Результаты измерений поместили в таблицу.

№ п/п

Расстояние между электродами

Разность потенциалов

9 см

0,02 В

12 см

0,03 В

15 см

0,04 В

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

  • В любом растении можно обнаружить возникновение электрических потенциалов.

Исследование влияния электрического поля на прорастание семян.

Инструменты и материалы

  • семена гороха, бобов;
  • чашки Петри;
  • аэроионизатор;
  • часы;
  • вода.
  1. Техника выполнения эксперимента №1

  1. Ежедневно включали ионизатор на 10 минут.

Сроки

Наблюдения

горох

06.03.09

Замачивание семян

Замачивание семян

07.03.09

Набухание семян

Набухание семян

08.03.09

Прорастание 6 семян

Без изменений

09.03.09

Прорастание еще 4 сем

Прорастание 8 семян

(5 не проросли)

10.03.09

Увеличение ростков

у 10 семян (3 не проросли)

Увеличение ростков

11.03.09

Увеличение ростков

у 10 семян (3 не проросли)

Увеличение ростков

12.03.09

Увеличение ростков

Увеличение ростков

Сроки

Наблюдения

Бобы (7 сем)

Опытная чашка

Контрольная чашка

06.03.09

Замачивание семян

Замачивание семян

07.03.09

Набухание семян

Набухание семян

08.03.09

Набухание семян

Без изменений

09.03.09

Прорастание 7 семян

Без изменений

10.03.09

Увеличение ростков семян

Прорастание 3 семян

(4 не проросли)

11.03.09

Увеличение ростков семян

Прорастание 2 семян

(2 не проросли)

12.03.09

Увеличение ростков семян

Увеличение ростков семян

Результаты исследования

Результаты эксперимента свидетельствуют, что прорастание семян более быстрое и успешное под действием электрического поля ионизатора.

Порядок выполнения эксперимента №2

  1. Для опыта взяли семена гороха и бобов, замочили в чашках Петри и поместили в разных помещениях с одинаковой освещенностью и комнатной температурой. В одном из помещений установили аэроионизатор – прибор для искусственной ионизации воздуха.
  2. Ежедневно включали ионизатор на 20 минут.
  3. Каждый день увлажняли семена гороха, бобов и наблюдали, когда семена проклюнутся.

Сроки

Наблюдения

горох

Опытная чашка (помещение с ионизатором)

Контрольная чашка (помещение без ионизатора)

15.03.09

Замачивание семян

Замачивание семян

16.03.09

Набухание семян

Набухание семян

17.03.09

Без изменений

Без изменений

18.03.09

Прорастание 6 семян

Прорастание 9 семян

(3 не проросли)

19.03.09

Прорастание 2 семян

(4 не проросли)

Увеличение ростков семян

20.03.09

Увеличение ростков семян

Увеличение ростков семян

21.03.09

Увеличение ростков семян

Увеличение ростков семян

Сроки

Наблюдения

бобы

Опытная чашка

(с обработанными семенами)

Контрольная чашка

15.03.09

Замачивание семян

Замачивание семян

16.03.09

Набухание семян

Набухание семян

17.03.09

Без изменений

Без изменений

18.03.09

Прорастание 3 семян

(5 не проросли)

Прорастание 4 семян

(4 не проросли)

19.03.09

Прорастание 3 семян

(2 не проросли)

Прорастание 2 семян

(2 не проросли)

20.03.09

Увеличение ростков

Прорастание 1 семени

(1 не проросло)

21.03.09

Увеличение ростков

Увеличение ростков

Результаты исследования

Результаты эксперимента свидетельствуют, что более длительное воздействие электрического поля отрицательно подействовало на прорастание семян. Они проросли позже и не столь успешно.

Порядок выполнения эксперимента №3

  1. Для опыта взяли семена гороха и бобов, замочили в чашках Петри и поместили в разных помещениях с одинаковой освещенностью и комнатной температурой. В одном из помещений установили аэроионизатор – прибор для искусственной ионизации воздуха.
  2. Ежедневно включали ионизатор на 40 минут.
  3. Каждый день увлажняли семена гороха, бобов и наблюдали, когда семена проклюнутся.

Замачивание семян

02.04.09

Набухание семян

Набухание семян

03.04.09

Без изменений

Без изменений

04.04.09

Без изменений

Прорастание 8 семян

(4 не проросли)

05.04.09

Без изменений

Увеличение ростков

06.04.09

Прорастание 2 семян 02.04.09

Набухание семян

Набухание семян

03.04.09

Без изменений

Без изменений

04.04.09

Без изменений

Без изменений

05.04.09

Без изменений

Прорастание 3 семян

(4 не проросли)

06.04.09

Прорастание 2 семян

(5 не проросли)

Прорастание 2 семян

(2 не проросли)

07.04.09

Увеличение ростков

Увеличение ростков

Результаты исследования

Результаты эксперимента свидетельствуют, что более длительное воздействие электрического поля отрицательно подействовало на прорастание семян. Прорастание их заметно понизилось.

  1. ВЫВОДЫ

  • В любом растении можно обнаружить возникновение электрических потенциалов.
  • Электрический потенциал зависит от вида и размеров растений, от расстояния между электродами.
  • Обработка семян электрическим полем в разумных пределах приводит к ускорению процесса прорастания семян и более успешному их прорастанию.
  • После обработки и анализа экспериментальных и контрольных образцов можно сделать предварительный вывод – увеличение времени облучения электростатическим полем действуют угнетающе, так как качество прорастания семян ниже при увеличении времени ионизации.
  1. Заключение

В настоящее время вопросам влияния электрических токов на растения посвящены многочисленные исследования ученых. Влияние электрических полей на растения до сих пор еще тщательно изучается.

Исследования, выполненные в Институте физиологии растений, позволили установить зависимость между интенсивностью фотосинтеза и значением разности электрических потенциалов между землей и атмосферой. Однако еще не исследован механизм, лежащий в основе этих явлений.

Приступая к исследованию, мы ставили перед собой цель: определить влияние электрического поля на семена растений.

После обработки и анализа экспериментальных и контрольных образцов можно сделать предварительный вывод – увеличение времени облучения электростатическим полем действуют угнетающе. Мы считаем, что данная работа не закончена, так как получены только первые результаты.

Дальнейшие исследования по данному вопросу можно продолжить по следующим направлениям:

  1. Повлияла ли обработка семян электрическим полем на дальнейший рост растений?
  1. ЛИТЕРАТУРА

  1. Богданов К. Ю. Физик в гостях у биолога. - М.: Наука, 1986. 144 с.
  2. Воротников А.А. Физика – юным. – М: Харвест, 1995-121с.
  3. Кац Ц.Б. Биофизика на уроках физики. – М: Просвещение, 1971-158с.
  4. Перельман Я.И. Занимательная физика. – М: Наука, 1976-432с.
  5. Артамонов В.И. Занимательная физиология растений. – М.: Агропромиздат, 1991.
  6. Арабаджи В. И. Загадки простой воды.- М.: «Знание», 1973.
  7. http://www.pereplet.ru/obrazovanie/stsoros/163.html
  8. http://www.npl-rez.ru/litra/bios.htm
  9. http://www.ionization.ru


Наша Земля и другие планеты имеют как магнитное поля, так и электрическое. О том что Земля имеет электрическое поле, было известно лет 150 тому назад. Электрический заряд планет в солнечной системе создается Солнцем благодаря эффектам электростатической индукции и ионизации вещества планет. Магнитное поле образуется за счет осевого вращения заряженных планет. Среднее магнитное поле Земли и планет зависит от средней поверхностной плотности отрицательного электрического заряда, угловой скорости осевого вращения и радиуса планеты. Поэтому Землю (и другие планеты), по аналогии с прохождением света через линзу, следует рассматривать как электрическую линзу, а не источник электрического поля.

Значит, Земля связана с Солнцем с помощью электрической силы, само Солнце связано с центром Галактики с помощью магнитной силы, а центр Галактики связан с центральным сгущением галактик посредством электрической силы.

Наша планета в электрическом отношении представляет собой подобие сферического конденсатора, заряженного примерно до 300 000 вольт. Внутренняя сфера - поверхность Земли - заряжена отрицательно, внешняя сфера - ионосфера - положительно. Изолятором служит атмосфера Земли.

Через атмосферу постоянно протекают ионные и конвективные токи утечки конденсатора, которые достигают многих тысяч ампер. Но, несмотря на это разность потенциалов между обкладками конденсатора не уменьшается.

Это означает, что в природе существует генератор (G), который постоянно восполняет утечку зарядов с обкладок конденсатора. Таким генератором является магнитное поле Земли, которое вращается вместе с нашей планетой в потоке солнечного ветра.

Как и в любом заряженном конденсаторе, в земном конденсаторе существует электрическое поле. Напряженность этого поля распределяется очень неравномерно по высоте: она максимальна у поверхности Земли и составляет примерно 150 В/м. С высотой она уменьшается приблизительно по закону экспоненты и на высоте 10 км составляет около 3% от значения у поверхности Земли.

Таким образом, почти всё электрическое поле сосредоточено в нижнем слое атмосферы, у поверхности Земли. Вектор напряженности электрического поля Земли E направлен в общем случае вниз. Электрическое поле Земли, как и любое электрическое поле, действует на заряды с определенной силой F, которая толкает положительные заряды вниз, к земле, а отрицательные - вверх, в облака.

Все это можно увидеть в природных явлениях. На Земле постоянно бушуют ураганы, тропические шторма и множество циклонов. Например, подъем воздуха во время урагана происходит в основном за счет разности плотности воздуха на периферии урагана и в его центре - тепловой башне, но не только. Часть подъемной силы (примерно одну треть) обеспечивает электрическое поле Земли, согласно закону Кулона.

Океан во время шторма представляет собой огромное поле, усыпанное остриями и ребрами, на которых концентрируются отрицательные заряды и напряженность электрического поля Земли. Испаряющиеся молекулы воды в таких условиях легко захватывают отрицательные заряды и уносят их с собой. А электрическое поле Земли в полном соответствии с законом Кулона двигает эти заряды вверх, добавляя воздуху подъемную силу.

Таким образом, глобальный электрический генератор Земли расходует часть своей мощности на усиление атмосферных вихрей на планете - ураганов, штормов, циклонов и пр. Кроме того, такой расход мощности никак не сказывается на величине электрического поля Земли.

Электрическое поле Земли подвержено колебаниям: зимой оно сильнее, чем летом, ежедневно оно достигает максимума в 19 часов по Гринвичу, также зависит от состояния погоды. Но эти колебания не превышают 30% от его среднего значения. В некоторых редких случаях при определенных погодных условиях напряженность этого поля может увеличиться в несколько раз.

Во время грозы электрическое поле изменяется в больших пределах и может изменить направление на противоположное, но это происходит на небольшой площади, непосредственно под грозовой ячейкой и в течение короткого времени.

Глобальный конденсатор

В природе существует совершенно уникальный альтернативный источник энергии, экологически чистый, возобновляемый, простой в использовании, который до сих пор нигде не используется. Источник этот — атмосферный электрический потенциал.

Наша планета в электрическом отношении представляет собой подобие сферического конденсатора, заряженного примерно до 300 000 вольт. Внутренняя сфера — поверхность Земли — заряжена отрицательно, внешняя сфера — ионосфера — положительно. Изолятором служит атмосфера Земли (Рис.1).

Через атмосферу постоянно протекают ионные и конвективные токи утечки конденсатора, которые достигают многих тысяч ампер. Но несмотря на это разность потенциалов между обкладками конденсатора не уменьшается.

А это значит, что в природе существует генератор (G), который постоянно восполняет утечку зарядов с обкладок конденсатора. Таким генератором является магнитное поле Земли , которое вращается вместе с нашей планетой в потоке солнечного ветра.

Чтобы воспользоваться энергией этого генератора, нужно каким то образом подключит к нему потребитель энергии.

Подключиться к отрицательному полюсу — Земле — просто. Для этого достаточно сделать надежное заземление. Подключение к положительному полюсу генератора — ионосфере — является сложной технической задачей, решением которой мы и займемся.

Как и в любом заряженном конденсаторе, в нашем глобальном конденсаторе существует электрическое поле. Напряженность этого поля распределяется очень неравномерно по высоте: она максимальна у поверхности Земли и составляет примерно 150 В/м. С высотой она уменьшается приблизительно по закону экспоненты и на высоте 10 км составляет около 3% от значения у поверхности Земли.

Таким образом, почти всё электрическое поле сосредоточено в нижнем слое атмосферы, у поверхности Земли. Вектор напряженности эл. поля Земли E направлен в общем случае вниз. В своих рассуждениях мы будем использовать только вертикальную составляющую этого вектора. Электрическое поле Земли, как и любое электрическое поле, действует на заряды с определенной силой F, которая называется кулоновской силой. Если умножить величину заряда на напряженность эл. поля в этой точке, то получим как раз величину кулоновской силы Fкул.. Эта кулоновская сила толкает положительные заряды вниз, к земле, а отрицательные — вверх, в облака.

Проводник в электрическом поле

Установим на поверхности Земли металлическую мачту и заземлим ее. Внешнее электрическое поле моментально начнет двигать отрицательные заряды (электроны проводимости) вверх, к верхушке мачты, создавая там избыток отрицательных зарядов. А избыток отрицательных зарядов на верхушке мачты создаст свое электрическое поле, направленное навстречу внешнему полю. Наступает момент, когда эти поля сравняются по величине, и движение электронов прекращается. Это значит, что в проводнике, из которого сделана мачта, электрическое поле равно нулю.

Так работают законы электростатики.


Положим высота мачты h = 100 м., средняя напряженность по высоте мачты Еср. = 100 В/м.

Тогда разность потенциалов (э.д.с.) между Землей и верхушкой мачты будет численно равна: U = h * Eср. = 100 м * 100 В/м = 10 000 вольт. (1)

Это — совершенно реальная разность потенциалов, которую можно измерить. Правда, обычным вольтметром с проводами измерить ее не удастся — в проводах возникнет точно такая же э.д.с., как и в мачте, и вольтметр покажет 0. Эта разность потенциалов направлена противоположно вектору напряженности Е электрического поля Земли и стремится вытолкнуть электроны проводимости из верхушки мачты вверх, в атмосферу. Но этого не происходит, электроны не могут покинуть проводник. У электронов недостаточно энергии для того, чтобы покинуть проводник, из которого сделана мачта. Эта энергия называется работой выхода электрона из проводника и для большинства металлов она составляет менее 5 электронвольт — величина весьма незначительная. Но электрон в металле не может приобрести такую энергию между столкновениями с кристаллической решеткой металла и поэтому остается на поверхности проводника.

Возникает вопрос: что произойдет с проводником, если мы поможем избыточным зарядам на верхушке мачты покинуть этот проводник?

Ответ простой: отрицательный заряд на верхушке мачты уменьшится, внешнее электрическое поле внутри мачты уже не будет скомпенсировано и начнет снова двигать электроны проводимости вверх к верхнему концу мачты. Значит, по мачте потечет ток. И если нам удастся постоянно удалять избыточные заряды с верхушки мачты, в ней постоянно будет течь ток. Теперь нам достаточно разрезать мачту в любом, удобном нам месте и включить туда нагрузку (потребитель энергии) — и электростанция готова.


На рис.3 показана принципиальная схема такой электростанции. Под действием электрического поля Земли электроны проводимости из земли движутся по мачте через нагрузку и далее вверх по мачте к эмиттеру, который освобождает их из поверхности металла верхушки мачты и отправляет их в виде ионов в свободное плавание по атмосфере. Электрическое поле Земли в полном соответствии с законом Кулона поднимает их вверх до тех пор, пока они на своем пути не будут нейтрализованы положительными ионами, которые всегда опускаются вниз из ионосферы под действием того же поля.

Таким образом, мы замкнули электрическую цепь между обкладками глобального электрического конденсатора, который в свою очередь подключен к генератору G, и включили в эту цепь потребитель энергии (нагрузку). Остается решить один важный вопрос: каким образом удалять избыточные заряды с верхушки мачты?

Конструкция эмиттера

Простейшим эмиттером может служить плоский диск из листового металла с множеством иголок, расположенных по его окружности. Он «насажен» на вертикальную ось и приведен во вращение.

При вращении диска набегающий влажный воздух срывает электроны с его иголок и таким образом освобождает их из металла.

Электростанция с подобным эмиттером уже существует. Правда, ее энергию никто не использует, с нею борются.
Это — вертолет, несущий на длинном металлическом стропе металлическую конструкцию при монтаже высоких строений. Здесь есть все элементы электростанции, изображенной на рис.3, за исключением потребителя энергии (нагрузки). Эмиттером являются лопасти винтов вертолета, которые обдуваются потоком влажного воздуха, мачтой служит длинный стальной строп с металлической конструкцией. И рабочие, которые устанавливают эту конструкцию на место, прекрасно знают, что прикасаться к ней голыми руками нельзя — «ударит током». И дейсвительно, они в этот момент становятся нагрузкой в цепи электростанции.

Безусловно, возможны и другие конструкции эмиттеров, более эффективные, сложные, основанные на разных принципах и физических эффектах см. рис. 4-5.

Эмиттера в виде готового изделия сейчас не существует. Каждый заинтересованный в этой идее вынужден самостоятельно сконструировать себе свой эмиттер.

В помощь таким творческим людям автор приводит ниже свои соображения по конструкции эмиттера.

Наиболее перспективными представляются следующие конструкции эмиттеров.

Первый вариант исполнения эмиттера


Молекула воды имеет хорошо выраженную полярность и может легко захватить свободный электрон. Если обдувать паром заряженную отрицательно металлическую пластину, то пар будет захватывать с поверхности пластины свободные электроны и уносить их с собой. Эмиттер представляет собой щелевое сопло, вдоль которого помещен изолированный электрод А и на который подается положительный потенциал от источника И. Электрод А и острые края сопла образуют небольшую заряженную емкость. Свободные электроны собираются на острых краях сопла под воздействием положительного изолированного электрода А. Проходящий через сопло пар срывает электроны с краев сопла и уносит их в атмосферу. На рис. 4 изображено продольное сечение этой конструкции. Поскольку электрод А изолирован от внешней среды, тока в цепи источника э.д.с. нет. И этот электрод нужен здесь только для того, чтобы вместе с острыми краями сопла создать в этом промежутке сильное электрическое поле и концентрировать электроны проводимости на краях сопла. Таким образом, электрод А с положительным потенциалом является своего рода активирующим электродом. Меняя на нем потенциал, можно добиться нужной величины силы тока эмиттера.

Возникает очень важный вопрос — сколько пара нужно подавать через сопло и не получится ли так, что всю энергию станции придется израсходовать на превращение воды в пар? Проведем небольшой подсчет.

В одной граммолекуле воды (18 мл) содержится 6,02 * 1023 молекул воды (число Авогадро). Заряд одного электрона равен 1,6 * 10 (- 19) Кулона. Перемножив эти величины, получим, что на 18 мл воды можно разместить 96 000 Кулонов электрического заряда, а на 1 литре воды — более 5 000 000 Кулонов. А это значит, что при токе 100 А одного литра воды хватит для работы установки в течение 14 часов. Для превращения в пар такого количества воды потребуется совсем небольшой процент вырабатываемой энергии.

Конечно, прицепить к каждой молекуле воды электрон — задача вряд ли выполнимая, но мы здесь определили предел, к которому можно постоянно приближаться, совершенствуя конструкцию устройства и технологии.

Кроме того, расчеты показывают, что энергетически выгоднее продувать через сопло не пар, а влажный воздух, регулируя его влажность в нужных пределах.

Второй вариант исполнения эмиттера

На вершине мачты установлен металлический сосуд с водой. Сосуд соединен с металлом мачты надежным контактом. В середине сосуда установлена стеклянная капиллярная трубка. Уровень воды в трубке выше, чем в сосуде. Это создает электростатический эффект острия — в верхней части капиллярной трубки создается максимальная концентрация зарядов и максимальная напряженность электрического поля.

Под действием электрического поля вода в капиллярной трубке поднимется и будет распыляться на мелкие капельки, унося с собой отрицательный заряд. При определенной небольшой силе тока вода в капиллярной трубке закипит, и уже пар будет уносить заряды. А это должно увеличить ток эмиттера.

В таком сосуде можно установить несколько капиллярных трубок. Сколько потребуется воды — расчеты см. выше.

Третий вариант исполнения эмиттера. Искровой эмиттер.

При пробое искрового промежутка вместе с искрой из металла выскакивает облако электронов проводимости.


На рис.5 показана принципиальная схема искрового эмиттера. От генератора высоковольтных импульсов отрицательные импульсы поступают на мачту, положительные — на на электрод, который образует искровой промежуток с верхушкой мачты. Получается нечто подобное автомобильной свече зажигания, но по устройству значительно проще.
Генератор высоковольтных импульсов принципиально мало чем отличается от обычной бытовой газовой зажигалки китайского производства с питанием от одной пальчиковой батарейки.

Главное достоинство такого устройства — возможность регулировать ток эмиттера с помощью частоты разрядов, величины искрового промежутка, можно сделать несколько искровых промежутков и пр.

Генератор импульсов можно установить в любом удобном месте, совсем не обязательно на верхушке мачты.

Но существует один недостаток — искровые разряды создают радиопомехи. Поэтому верхушку мачты с искровыми промежутками нужно экранировать цилиндрической сеткой, обязательно изолированной от мачты.

Четвертый вариант исполнения эмиттера

Еще одна возможность — создать эмиттер на принципе прямой эмиссии электронов из материала эмиттера. Для этого нужен материал с очень низкой работой выхода электрона. Такие материалы существуют давно, например, паста из оксида бария-0,99 эв. Возможно, сейчас есть что-либо получше.

В идеале это должен быть комнатнотемпературный сверхпроводник (КТСП), которых пока не существует в природе. Но по разным сообщениям он должен скоро появиться. Здесь вся надежда на нанотехнологии.

Достаточно поместить на верхушку мачты кусок КТСП — и эмиттер готов. Проходя по сверхпроводнику, электрон не встречает сопротивления и очень быстро приобретает энергию, необходимую для выхода из металла (около 5 эв.)

И еще одно важное замечание. По законам электростатики иапряженность электрического поля Земли наиболее высока на возвышенностях — на вершинах холмов, сопок, гор и т. п. В низинах, впадинах и углублениях она минимальна. Поэтому такие устройства лучше строить на самых высоких местах и подальше от высоких строений или же устанавливать их на крышах самых высоких строений.

Еще хорошая идея — поднять проводник с помощью аэростата. Эмиттер, конечно, нужно устанавливать на верху аэростата. В таком случае можно получить достаточно большой потенциал для самопроизвольной эмиссии электронов из металла, придав ему форму отрия, и, значит, никаких сложных эмиттеров в этом случае не потребуется.

Существует еще одна хорошая возможность получить эмиттер. В промышленности применяется электростатическая окраска металла. Распыленная краска, вылетая из распылителя, несет на себе электрический заряд, в силу чего и оседает на окрашиваемый металл, на который подается заряд противоположного знака. Технология отработана.

Такое устройство, которое заряжает распыленную краску, как раз и является настоящим эмиттером эл. зарядов. Остается только приспособить его к описанной выше установке и заменить краску водой, если возникнет необходимомть в воде.

Вполне возможно, что влаги, всегда содержащейся в воздухе, будет достаточно для работы эмиттера.

Не исключено, что в промышленности существуют и другие подобные устройства, которые легко можно превратить в эмиттер.

Выводы

В результате наших действий мы подключили потребитель энергии к глобальному генератору электрической энергии. К отрицательному полюсу — Земле — мы подключились с помощью обычного металлического проводника (заземления), а к положительному полюсу — ионосфере — с помощью весьма специфического проводника — конвективного тока. Конвективные токи — это электрические токи, обусловленные упорядоченным переносом заряженных частиц. В природе они встречаются часто. Это и обычные конвективные восходящие струи, которые несут отрицательные заряды в облака, это и смерчи (торнадо). которые тащат к земле сильно заряженную положительными зарядами облачную массу, это и восходящие потоки воздуха во внутритропической зоне конвергенции, которые уносят огромное количество отрицательных зарядов в верхние слои тропосферы. И такие токи достигают очень больших значений.

Если мы создадим достаточно эффективный эмиттер, который сможет освобождать из верхушки мачты (или нескольких мачт), положим, 100 кулонов зарядов в секунду (100 ампер.), то мощность построенной нами электростанции будет равна 1000 000 ватт или 1 мегаватт. Вполне достойная мощность!

Такая установка незаменима в отдаленных поселениях, на метеостанциях и других удаленных от цивилизации местах.

Из вышесказанного можно сделать следующие выводы:

Источник энергии является исключительно простым и удобным в использовании.

На выходе получаем самый удобный вид энергии — электроэнергию.

Источник экологически чист: никаких выбросов, никакого шума и т.п.

Установка исключительно проста в изготовлении и эксплуатации.

Исключительная дешевизна получаемой энергии и еще масса других достоинств.

Электрическое поле Земли подвержено колебаниям: зимой оно сильнее, чем летом, ежедневно оно достигает максимума в 19 часов по Гринвичу, также зависит от состояния погоды. Но эти колебания не превышают 20% от его среднего значения.

В некоторых редких случаях при определенных погодных условиях напряженность этого поля может увеличиться в несколько раз.

Во время грозы эл.поле изменяется в больших пределах и может изменить направление на противоположное, но это происходит на небольшой площади непосредственно под грозовой ячейкой.

Курилов Юрий Михайлович


Бовин А.А.
Краснодарский Краевой Центр ЮНЕСКО

Все живые организмы, существующие на Земле, так или иначе, в ходе длительной эволюции полностью приспособились к ее природным условиям. Адаптация произошла не только к физико-химическим условиям, таким как температура, давление, состав атмосферного воздуха, освещение, влажность, но и к естественным полям Земли: геомагнитным, гравитационным, электрическим и электромагнитным. Техногенная деятельность человека за сравнительно короткий исторический период оказала значительное воздействие на природные объекты, резко нарушив тонкий баланс между живыми организмами и условиями окружающей среды, который формировался в течение тысячелетий. Это привело к многим непоправимым последствиям, в частности, к вымиранию некоторых животных и растений, многочисленным заболеваниям и к сокращению средней продолжительности жизни людей в некоторых регионах. И только в последние десятилетия начали проводиться научные исследования, изучающие влияние природных и антропогенных факторов на человека и другие живые организмы.

Среди перечисленных факторов воздействие электрических полей на человека, на первый взгляд, не является существенным, поэтому исследования в этой области были немногочисленны. Но и до сих пор, несмотря на растущий интерес к этой проблеме, влияние электрических полей на живые организмы остается малоизученной областью.

В данной работе сделан краткий обзор работ связанных с данной проблемой.


1. ЕСТЕСТВЕННЫЕ ЭЛЕКТРИЧЕСКИЕ ПОЛЯ

Электрическое поле Земли – это естественное электрическое поле Земли как планеты, которое наблюдается в твёрдом теле Земли, в морях, в атмосфере и магнитосфере. Электрическое поле 3емли обусловлено сложным комплексом геофизических явлений. Существование электрического поля в атмосфере Земли связано в основном с процессами ионизации воздуха и пространственным разделением возникающих при ионизации положительных и отрицательных электрических зарядов. Ионизация воздуха происходит под действием космических лучей ультрафиолетового излучения Солнца; излучения радиоактивных веществ, имеющихся на поверхности Земли и в воздухе; электрических разрядов в атмосфере и т. д. Многие атмосферные процессы: конвекция образование облаков, осадки и другие - приводят к частичному разделению разноимённых зарядов и возникновению атмосферных электрических полей. Относительно атмосферы поверхность Земли заряжена отрицательно.

Существование электрического поля атмосферы приводит к возникновению токов, разряжающих электрический «конденсатор» атмосфера - Земля. В обмене зарядами между поверхностью Земли и атмосферой значительную роль играют осадки. В среднем осадки приносят положительных зарядов в 1,1-1,4 раза больше, чем отрицательных. Утечка зарядов из атмосферы восполняется также за счёт токов, связанных с молниями и отеканием зарядов с остроконечных предметов. Баланс электрических зарядов, приносимых на земную поверхность площадью 1 км2 за год, можно характеризовать следующими данными:

На значительной части земной поверхности - над океанами - токи с остриёв исключаются, и здесь будет положительный баланс. Существование статического отрицательного заряда на поверхности Земли (около 5,7?105 Кл) говорит о том, что эти токи в среднем сбалансированы.

Электрические поля в ионосфере обусловлены процессами, протекающими как в верхних слоях атмосферы, так и в магнитосфере. Приливные движения воздушных масс, ветры, турбулентность - всё это является источником генерации электрического поля в ионосфере благодаря эффекту гидромагнитного динамо. Примером может служить солнечно-суточная электрическая токовая система, которая вызывает на поверхности Земли суточные вариации магнитного поля. Величина напряжённости электрического поля в ионосфере зависит от местоположения точки наблюдения, времени суток, общего состояния магнитосферы и ионосферы, от активности Солнца. Она колеблется от нескольких единиц до десятков мВ/м, а в высокоширотной ионосфере достигает ста и более мВ/м. При этом сила тока доходит до сотен тысяч ампер. Из-за высокой электропроводности плазмы ионосферы и магнитосферы вдоль силовых линий магнитного поля Земли электрического поля ионосферы переносятся в магнитосферу, а магнитосферные поля в ионосферу.

Одним из непосредственных источников электрического поля в магнитосфере является солнечный ветер. При обтекании магнитосферы солнечным ветром возникает ЭДС. Эта ЭДС вызывает электрические токи, замыкающиеся обратными токами, текущими поперёк хвоста магнитосферы. Последние порождаются положительными пространственными зарядами на утренней стороне хвоста магнитосферы и отрицательными - на его вечерней стороне. Величина напряженности электрического поля поперёк хвоста магнитосферы достигает 1 мВ/м. Разность потенциалов поперёк полярной шапки составляет 20-100 кВ.

С дрейфом частиц непосредственно связано существование магнитосферного кольцевого тока вокруг Земли. В периоды магнитных бурь и полярных сияний электрические поля и токи в магнитосфере и ионосфере испытывают значительные изменения.

Магнитогидродинамические волны, генерируемые в магнитосфере, распространяются по естественным волноводным каналам вдоль силовых линий магнитного поля Земли. Попадая в ионосферу, они преобразуются в электромагнитные волны, которые частично доходят до поверхности Земли, а частично распространяются в ионосферном волноводе и затухают, На поверхности Земли эти волны регистрируются в зависимости от частоты колебаний либо как магнитные пульсации (10-2-10 Гц), либо как очень низкочастотные волны (колебания с частотой 102-104 Гц).

Переменное магнитное поле Земли, источники которого локализованы в ионосфере и магнитосфере, индуцирует электрическое поле в земной коре. Напряжённость электрического поля в приповерхностном слое коры колеблется в зависимости от места и электрического сопротивления пород в пределах от нескольких единиц до нескольких сотен мВ/км, а во время магнитных бурь усиливается до единиц и даже десятков В/км. Взаимосвязанные переменные магнитное и электрическое поля Земли используют для электромагнитного зондирования в разведочной геофизике, а также для глубинного зондирования Земли.

Определённый вклад в электрическое поле Земли вносит контактная разность потенциалов между породами различной электропроводности (термоэлектрический, электрохимический, пьезоэлектрический эффекты). Особую роль при этом могут играть вулканические и сейсмические процессы.

Электрические поля в морях индуцируются переменным магнитным полем Земли, а также возникают при движении проводящей морской воды (морских волн и течений) в магнитном поле. Плотность электрических токов в морях достигает 10-6 А/м2. Эти токи могут быть использованы как естественные источники переменного магнитного поля для магнитовариационного зондирования на шельфе и в море.

Вопрос об электрическом заряде Земли как источнике электрического поля в межпланетном пространстве окончательно не решён. Считается, что Земля как планета электрически нейтральна. Однако эта гипотеза требует своего экспериментального подтверждения. Первые измерения показали, что напряженность электрического поля в околоземном межпланетном пространстве колеблется в пределах от десятых долей до нескольких десятков мВ/м.

В работе Д.Дюткина отмечены процессы, приводящие к накоплению электрического заряда и образованию электрических полей в недрах Земли и на ее поверхности. Рассмотрен механизм возникновения круговых электрических токов в ионосфере, приводящих к возбуждению мощных электрических токов в поверхностных слоях Земли.

В основах современной геофизики отмечается, что для поддержания напряженности геомагнитного поля должен действовать механизм постоянной генерации поля. Преобладание дипольного поля и его осевой характер, а также западный дрейф с исключительно большой для геологических процессов скоростью (0,2| или 20 км/год) свидетельствуют о связи геомагнитного поля с вращением Земли. Кроме того, прямая зависимость напряженности поля от скорости вращения Земли является доказательством взаимосвязанности этих явлений.

К этому можно добавить, что к настоящему времени накоплена огромная статистическая информация, связывающая изменение параметров солнечной активности, геомагнитного поля, скорости вращения Земли с временной периодичностью и интенсивностью различных природных процессов. Однако пока не выработан ясный физический механизм взаимосвязи всех этих процессов.

В работах профессора В.В.Суркова рассматривается природа ультранизкочастотных (УНЧ) электромагнитных полей. Описан механизм возбуждения УНЧ (до 3 Гц) электромагнитных полей в ионосферной плазме и атмосфере, указаны источники УНЧ электромагнитных полей в земле и атмосфере.

Гипотезы о возникновении электрических и магнитных полей Земли рассмотрены в научно-популярной статье доктора физико-математических наук Г.Фонарева. Согласно гипотезе академика В.В.Шулейкина электрические токи в водах Мирового океана создают дополнительное магнитное поле, которое налагается на основное. По мнению В.В. Шулейкина, электрические поля в океане должны быть порядка сотен или даже тысяч микровольт на метр – это довольно сильные поля. Советский ученый-ихтиолог А.Т. Миронов в начале 30-х годов, изучая поведение рыб, обнаружил у них хорошо выраженный электротаксис – способность реагировать на электрическое поле. Это навело его на мысль, что в морях и океанах должны существовать электрические (теллурические) поля. Хотя гипотезы В.В. Шулейкина и А.Т. Миронова па практике не подтвердились, они имеют все же не только исторический интерес: обе они сыграли важную стимулирующую роль в постановке многих новых научных задач.


2. ЖИВЫЕ ОРГАНИЗМЫ В ЕСТЕСТВЕННОМ ЭЛЕКТРИЧЕСКОМ ПОЛЕ

В настоящее время проведено множество исследований, касающихся влиянию электрических полей на живые организмы - от отдельных клеток до человека. Чаще всего рассматривается влияние электромагнитных и магнитных полей. Переменным электромагнитном полям и их воздействий на живые организмы посвящена большая доля все работ, так как эти поля, в основном, имеют антропогенное происхождение.

Постоянные электрические поля природного происхождения и их значение для живых организмов до сих пор исследованы недостаточно.

Наиболее просто и доходчиво о влиянии постоянного электрического поля Земли на человека, животных и растения изложено в работе А.А. Микулина.

Согласно новейшим исследованиям, земной шар заряжен отрицательно, то есть избыточным количеством свободных электрических зарядов - около 0,6 миллиона кулонов. Это очень большой заряд.

Отталкиваясь друг от друга силами Кулона, электроны стремятся скопиться на поверхности земного шара. На большом расстоянии от земли, охватывая ее со всех сторон, находится ионосфера, состоящая из большого количества положительно заряженных ионов. Между землей и ионосферой существует электрическое поле.

При ясном небе на расстоянии метра от земли разность потенциалов достигает примерно 125 вольт. Поэтому мы имеем право утверждать, что электроны, стремящиеся под действием поля вырваться с поверхности земли, проникали в голые ступни и электропроводные концы нервов мышц первобытного человека, ходившего по земле босиком, не носившего сапог на электронепроницаемой искусственной подошве. Это проникновение электронов продолжалось только до тех пор, пока общий свободный отрицательный заряд человека не достигал потенциала заряда на участке поверхности земли, где он находился.

Под действием поля заряды, проникшие в тело человека, стремились вырваться наружу, где и захватывались, рекомбинировали с положительно заряженными ионами атмосферы, непосредственно соприкасавшейся с открытыми кожными покровами головы и рук. Тело человека, его живые клетки и все функциональные зависимости метаболизма миллионы лет были приспособлены природой для здоровой жизни человека в условиях околоземного электрического поля и электрообмена, выраженного, в частности, в притоке электронов в ступни и оттоке, рекомбинации, электронов в положительно заряженные ионы атмосферы.

Далее автор делает важный вывод: соприкасавшиеся с землей мышцы животных и человека устроены природой так, что они должны нести в себе отрицательный электрозаряд, соответствующий величине заряда земной поверхности, на которой живое существо находилось в данный момент. Величина отрицательного заряда человеческого тела должна меняться в зависимости от напряженности электрического поля в данной точке земли в данный момент.

Причин к изменению напряженности электрического поля очень много. Одна из главных - облачность, несущая сильнейшие местные электрозаряды. Они достигают в момент образования молний десятков миллионов вольт. В живом организме на поверхности кожи напряженность электрозарядов достигает иногда такой величины, что появляются искры при соприкосновении с металлом, при снятии нейлонового белья.

Новейшие наблюдения сотрудников Института общественной и коммунальной гигиены показали, что при перемене погоды самочувствие больного человека зависит от величины местной напряженности поля земли, так же как и от изменения барометрического давления, в большинстве случаев сопутствующего изменению напряженности поля. Но так как в быту мы не имеем приборов для измерения величины напряжения поля земли, то и объясняем состояние самочувствия не основной причиной - изменением напряженности поля, а следствием - падением барометрического давления.

Опыты показали, что любая умственная или физическая работа, выполняемая человеком, который изолирован от земли, сопровождается уменьшением его отрицательного природного заряда. Однако ни одно из описанных изменений электрического потенциала не наблюдается и не замеряется даже самыми точными приборами, если тело человека соприкасается с землей или связано с землей проводником. Недостаток электронов тотчас же ликвидируется. На любом осциллографе легко заметить эти токи и определить их величину.

Какие же изменения в жизни человека обусловили его отход от естественного первобытного бытия? Человек надел сапоги, выстроил дома, изобрел токонепроводящнй линолеум, резиновые подошвы, залил улицы городов и дороги асфальтом. Человек сегодня гораздо меньше соприкасается с электрозарядами земли. В этом одна из причин таких “общедоступных” болезней, как головные боли, раздражительность, неврозы, сердечнососудистые заболевания, быстрая утомляемость, плохой сон и пр. В прошлом земские врачи прописывали больным прогулки босиком по росе. В Англии и сейчас функционирует несколько обществ “босоножек”. Это лечение нельзя назвать иначе, как “заземление тела пациента”.

В Институте физиологии растений АН СССР доктором биологических наук Э. Журбицким поставлен ряд опытов по изучению влияния электрического поля на растения. Усиление поля до известной величины ускоряет рост. Помещение растений в противоестественное поле - наверху отрицательный пояс, а в земле положительный - рост угнетает. Журбицкий считает, что чем больше разность потенциалов между всходами и атмосферой, тем интенсивнее протекает фотосинтез. В оранжереях урожай можно увеличить на 20-30%. Вопросами влияния электричества на растения занимается ряд научных учреждений: Центральная генетическая лаборатория имени И. В. Мичурина, сотрудники ботанического сада МГУ и др.

Представляет интерес работа Р.А.Новицкого, посвященная восприятию электрических полей и токов рыбами, а также генерация электрических полей сильноэлектрическими рыбами (пресноводный электрический угорь, электрические скат и сом, американский звездочет). В работе отмечено, что слабоэлектрические рыбы обладают высокой чувствительностью к электрическим полям, это позволяет им находить и различать в воде объекты, определять соленость воды, использовать разряды других рыб с информационной целью в межвидовых и внутривидовых отношениях. Слабые электрические токи и магнитные поля воспринимаются, главным образом, рецепторами кожи рыб. Многочисленные исследования показали, что почти у всех слабо- и сильноэлектрических рыб электрорецепторами служат производные органов боковой линии. У акул и скатов электрорецептивную функцию выполняют так называемые ампулы Лоренцини - особые слизистые железы в коже. Более сильные электромагнитные поля воздействуют непосредственно на нервные центры водных организмов.


3. Техногенные электрические поля и их влияние на живые организмы

Технический прогресс, как известно, принес человечеству не только облегчение и удобство в производстве и быту, но и создал ряд серьезных проблем. В частности, возникла проблема защиты человека и других организмов от сильных электромагнитных, магнитных и электрических полей, создаваемых различными техническими устройствами. Позже появилась проблема защиты человека от длительного воздействия слабых электромагнитных полей, которое, как оказалось, также наносит вред жизнедеятельности человека. И только в последнее время стали обращать внимание и проводить соответствующие исследования по оценке влияния на живые организмы экранирования естественных геомагнитных и электрических полей.

Влияние мощных постоянных и переменных электрических полей техногенного происхождения на живые организмы изучается сравнительно давно. Источниками таких полей являются, прежде всего, высоковольтные линии электропередач (ЛЭП).

Электрическое поле, создаваемое линиями высоковольтных ЛЭП, оказывает неблагоприятное влияние на живые организмы. Наиболее чувствительны к электрическим полям копытные животные и человек в обуви, изолирующей его от земли. Копыто животных также является хорошим изолятором. В этом случае на изолированном от земли проводящем объемном теле наводится потенциал, зависящий от соотношения емкости тела на землю и на провода ЛЭП. Чем меньше емкость на землю (чем толще, например, подошва обуви), тем больше наведенный потенциал, который может составлять несколько киловольт и даже достигать 10 кВ.

В опытах, проведенных многими исследователями, обнаружено четкое пороговое значение напряженности поля, при котором наступает разительное изменение реакции подопытного животного. Оно определено равным 160 кВ/м, меньшая напряженность поля сколько-нибудь заметного вреда живому организму не наносит.

Напряженность электрического поля в рабочих зонах ЛЭП 750 кВ на высоте человеческого роста примерно в 5-6 раз меньше опасных значений. Выявлено неблагоприятное воздействие электрического поля промышленной частоты на персонал ЛЭП и подстанций напряжением 500 кВ и выше; при напряжении 380 и 220 кВ это действие выражено слабо. Но при всех напряжениях действие поля зависит от продолжительности нахождения в нем.

На основании исследований разработаны соответствующие санитарные нормы и правила, где указываются минимально допустимые расстояния расположения жилых построек от стационарных излучающих объектов, как, например, линий электропередач. Эти нормы предусматривают также и максимально допустимые (предельные) уровни излучения для других энергоопасных объектов. В ряде случаев, для защиты человека применяются громоздкие металлические экраны, в виде листов, сеток и других приспособлений.

Однако многочисленные исследования ученых в различных странах (Германия, США, Швейцария и др.) показали, что такие меры безопасности не могут полностью защитить человека от влияния вредных электромагнитных излучений (ЭМИ). При этом было установлено, что слабые электромагнитные поля (ЭМП), мощность которых измеряется тысячными долями Ватт, не менее опасны, а в ряде случаев и более опасны, чем излучения большой мощности. Ученые объясняют это тем, что интенсивность слабых электромагнитных полей соизмерима с интенсивностью излучений самого человеческого организма, его внутренней энергетики, которая формируется в результате функционирования всех систем и органов, включая клеточный уровень. Такими низкими (нетепловыми) интенсивностями характеризуются излучения электронных бытовых приборов, имеющихся сегодня в каждом доме. Это, главным образом, компьютеры, телевизоры, мобильные телефоны, СВЧ-печи и т.п. Они то и являются источниками вредных, т.н. техногенных ЭМИ, которые обладают свойством накапливаться в организме человека, нарушая при этом его биоэнергетическое равновесие, и в первую очередь, т.н. энергоинформационный обмен (ЭНИО). А это, в свою очередь, приводит к нарушению нормального функционирования основных систем организма. Многочисленные исследования в области биологического действия электромагнитных полей (ЭМП) позволили определить, что наиболее чувствительными системами организма человека являются: нервная, иммунная, эндокринная и половая. Биологический эффект ЭМП в условиях длительного многолетнего воздействия может привести к развитию отдаленных последствий, включая дегенеративные процессы центральной нервной системы, рак крови (лейкозы), опухоли мозга, гормональные заболевания и др.

В работе В.М. Коршунова сообщается, что в 1970-е годы специалисты вернулись к эффектам слабых и очень слабых магнитных и электрических полей на модельные физико-химические системы, биологические объекты и организм человека. Механизмы, вызывающие эти эффекты, «работают» на уровне молекул, а порой атомов, вследствие чего очень трудноуловимы. Тем не менее, ученые экспериментально продемонстрировали и теоретически объяснили магнитные и спиновые эффекты. Выяснилось, что хотя энергия магнитного взаимодействия на несколько порядков меньше энергии теплового движения, но на той стадии реакции, где собственно все и происходит, тепловое движение не успевает помешать действию магнитного поля.

Это открытие заставляет по-новому взглянуть и на сам феномен жизни на Земле, которая возникла и развивалась в условиях геомагнитного поля. В лаборатории было показано влияние сравнительно слабых (на порядок-два выше геомагнитного) постоянных и переменных магнитных полей на выход первичной реакции фотосинтеза - фундамента всей экосистемы нашей планеты. Это влияние оказалось небольшим (меньше процента), но важно другое: доказательство его реального существования.

В частности, в этой же работе отмечено, что бытовые электроприборы, окружающие нас, при определенном положении относительно нашего тела (или нашего тела относительно приборов) могут влиять на электрохимические процессы, протекающие в клетках организма.


4. ПРИБОРЫ И МЕТОДЫ ИЗМЕРЕНИЙ ЭЛЕКТРИЧЕСКИХ ПОЛЕЙ

Для исследования и контроля электромагнитной ситуации необходимо иметь соответствующие приборы – магнитометры для измерения характеристик магнитных полей и измерители напряженности электрического поля.

Поскольку потребность в таких приборах невелика (пока), то, в основном, подобные приборы выпускают небольшими сериями для двух целей: 1 – для контроля санитарных норм по технике безопасности; 2 – для целей разведочной геофизики.

К примеру, федеральным государственным унитарным предприятием "НПП "Циклон-Тест" серийно выпускается измеритель электрического поля ИЭП-05, который предназначен для измерения среднеквадратического значения напряженности переменных электрических полей, создаваемых различными техническими средствами.

Измерители напряженности электрического и магнитного полей предназначены для контроля норм по электромагнитной безопасности в области охраны природы, безопасности труда и населения.

В пределах своих технических характеристик прибор может использоваться для измерения напряженности электрической составляющей электромагнитных полей независимо от природы их возникновения, в том числе при контроле по СанПиН 2.2.4.1191-03 "Электромагнитные поля в производственных условиях" и СанПиН 2.1.2.1002-00 "Санитарно-эпидемиологические требования к жилым зданиям и помещениям".

Прибор имеет прямой отсчет измеряемой величины поля (в реальном масштабе времени) и может быть использован для электромагнитного мониторинга, контроля пространственного распределения полей и динамики измерения этих полей во времени.

Принцип действия прибора прост: в дипольной антенне электрическое поле наводит разность потенциалов, которая измеряется прибором типа миливольтметра.

Предприятие НПП “Циклон – Тест“ выпускает и другие приборы, предназначенные для измерения параметров электрических, магнитных и электромагнитных полей.

В тоже время, в геофизике издавна применяются методы электроразведки полезных ископаемых. Электрическая разведка представляет собой группу методов разведочной геофизики, основанной на изучении естественных или искусственно возбуждаемых электрических и электромагнитных полей в земной коре. Физическая основа электроразведки - различие горных пород и руд по их удельному электрическому сопротивлению, диэлектрической проницаемости, магнитной восприимчивости и другим свойствам.

Среди различных методов электроразведки следует отметить методы магнитотеллурического поля. С помощью этих методов исследуется переменная составляющая естественного электромагнитного поля Земли. Глубина проникновения магнитотеллурического поля в землю благодаря скин-эффекту зависит от его частоты. Поэтому поведение низких частот поля (сотые и тысячные доли Гц) отражает строение земной коры на глубинах в несколько км, а более высоких частот (десятки и сотни Гц) - на глубинах в несколько десятков м. Исследование зависимости измеренных электрических и магнитных компонент поля от его частоты позволяет изучать геологическое строение исследуемой территории.

Электроразведочная аппаратура состоит из источников тока, источников электромагнитного поля и измерительных устройств. Источники тока - батареи сухих элементов, генераторы и аккумуляторы; источники поля - заземлённые на концах линии или незаземлённые контуры, питаемые постоянным или переменным током. Измерительные устройства состоят из входного преобразователя (датчика поля), системы промежуточных преобразователей сигнала, преобразовывающей сигнал для его регистрации и фильтрующей помехи, и выходного устройства, обеспечивающего измерение сигнала. Электроразведочная аппаратура, предназначенная для изучения геологического разреза на глубине, не превышающей 1-2 км, изготавливается в виде лёгких переносимых комплектов.

Для научно-исследовательских целей чаще всего изготавливается специальная аппаратура с необходимыми параметрами.

В работе рассмотрены наиболее точные и чувствительные спектральные методы для измерения сверхслабых магнитных полей. Однако здесь есть важное утверждение, что на основе атомной спектроскопии может быть также построен стандарт напряженности электрического поля. В работе отмечается, что можно с высокой точностью измерять абсолютное значение напряженности электрического поля, используя эффект Штарка. Для этого необходимо использовать атомы с отличным от нуля орбитальным моментом в основном состоянии. Однако до сих пор, как утверждает автор, потребность в таких измерениях не стала достаточно острой, чтобы соответствующая техника была развита.

Напротив, именно сейчас и настало время для создания сверхчувствительных и точных приборов для измерения естественных электрических полей.


ЗАКЛЮЧЕНИЕ

Результаты многочисленных исследований показывают, что невидимые, неосязаемые электромагнитные, магнитные и электрические поля оказывают серьезное воздействие на человеческий и другие организмы. Влияние сильных полей изучено достаточно широко. Влияние слабых полей, на которое раньше не обращали внимание, оказалось ничуть не менее важным для живых организмов. Но исследования в этой области только начались.

Современный человек все больше времени проводит в помещениях железобетонного типа, в кабинах автомобилей. Но практически нет исследований, связанных с оценкой влияния на здоровье людей экранирующего действия помещений, металлических кабин автомобилей, самолетов и т.п. Особенно это касается экранирования естественного электрического поля Земли. Следовательно, такие исследования в настоящее время являются весьма актуальными.

«Современное человечество, как и все живое, обитает в своеобразном электромагнитном океане, поведение которого определяется теперь не только естественными причинами, но и искусственным вмешательством. Нам нужны опытные лоцманы, досконально знающие скрытые течения этого океана, его отмели и острова. И требуются еще более строгие навигационные правила помогающие оберегать путников от электромагнитных бурь», - так образно описал нынешнюю ситуацию один из первопроходцев отечественной магнитобиологии Ю.А. Холодов.


ЛИТЕРАТУРА

  1. Сизов Ю. П.. Электрическое поле Земли. Статья в БСЭ, Издательство «Советская энциклопедия», 1969 - 1978 г.
  2. Дюдкин Д. Будущее энергетики – геоэлектричество? Энергетика и промышленность России - избранные материалы, выпуск 182.
    http://subscribe.ru/archive/
  3. Сурков В.В. Область научных интересов В.В.Суркова.
    http://www.surkov.mephi.ru
  4. Фонарев Г. История двух гипотез. Наука и жизнь, 1988, № 8.
  5. Лаврова А.И., Плюснина Т.Ю., Лобанов, А.И.,Старожилова Т.К., Ризниченко Г.Ю. Моделирование воздействия электрического поля на систему ионных потоков в примембранной области клетки водоросли Chara.
  6. Алексеева Н.Т., Федоров В.П., Байбаков С.Е. Реакция нейронов различных отделов ЦНС на воздействие электромагнитного поля // Электромагнитные поля и здоровье человека: Материалы 2-й междунар. конф. "Пробл. электромагн. безопасности человека. Фундамент. и прикл. исслед. Нормирование ЭМП: философия, критерии и гармонизация", 20-24 сент. 1999 г., Москва. - М., 1999. - с.47-48.
  7. Гурвич Е.Б., Новохатская Э.А., Рубцова Н.Б. Смертность населения, проживающего вблизи энергообъекта электропередачи напряжением 500 киловольт // Мед. труда и пром. экол. - 1996. - N 9. - С.23-27. - Библиогр.: 8 назв.
  8. Гурфинкель Ю.И., Любимов В.В. Экранированная палата в клинике для защиты пациентов с ишемической болезнью сердца от воздействия геомагнитных возмущений // Мед. физика. - 2004. - N 3(23). - С.34-39. - Библиогр.: 23 назв.
  9. Микулин А.А.. Активное долголетие - моя борьба со старостью. Глава 7. Жизнь в электрическом поле.
    http://www.pseudology.org
  10. Курилов Ю.М.. Альтернативный источник энергии. Электрическое поле Земли – источник энергии.
    Научно-технический портал.
  11. Новицкий Р.А. Электрические поля в жизни рыб. 2008 г.
    http://www.fion.ru>
  12. Любимов В.В., Рагульская М.В. Электромагнитные поля, их биотропность и нормы экологической безопасности. Журнал депонированных рукописей №3 март, 2004.
    Труды научно-технической конференции - ПРОМТЕХЭКСПО XXI.
  13. Птицына Н.Г., Дж.Виллорези, Л.И.Дорман, Н.Юччи, М.И.Тясто. "Естественные и технологические низкочастотные магнитные поля как факторы, потенциально опасные для здоровья". ”Успехи физических наук" 1998, N 7 (том 168, стр.767-791).
  14. Грин Марк, к.т.н. Это должен знать каждый.
    health2000.ru
  15. Коршунов В.М.. Опасности электричества.
    www.korshunvm.ru
  16. ФГУП "НПП "Циклон-Тест".
    http://www.ciklon.ru
  17. Якубовский Ю.В.. Электрическая разведка. Статья в БСЭ, Издательство «Советская энциклопедия», 1969 - 1978 г.
  18. Александров Е. Б. . Приложения атомной спектроскопии к задачам фундаментальной метрологии. Физико-технический институт им. А. Ф. Иоффе РАН, С.-Петербург, Россия

Начнем с того, что индустрия сельского хозяйства разрушена до основания. Что дальше? Не пора ли собирать камни? Не пора ли объединить все творческие силы, чтобы дать селянам и дачникам те новинки, которые позволят резко поднять урожайность, сократить ручной труд, найти новые пути в генетике... Я бы предложил читателям журнала быть авторами рубрики "Для села и дачников". Начну с давней работы "Электрическое поле и урожайность."

В 1954 г., когда я был слушателем Военной академии связи в Ленинграде, страстно увлекся процессом фотосинтеза и провел интересное испытание с выращиванием лука на подоконнике. Окна комнаты, в которой я жил, выходили на север, и потому солнца луковицы получать не могли. Я высадил в два удлиненных ящика по пять луковиц. Землю брал в одном и том же месте для обоих ящиков. Удобрений у меня не было, т.е. были созданы как бы одинаковые условия для выращивания. Над одним ящиком сверху, на расстоянии полуметра (рис.1) расположил металлическую пластину, к которой прикрепил провод от высоковольтного выпрямителя +10 000 В, а в землю этого ящика воткнул гвоздь, к которому подсоединил "-" провод от выпрямителя.

Сделал это для того, что по моей теории катализа создание в зоне растений высокого потенциала приведет к увеличению дипольного момента молекул, участвующих в реакции фотосинтеза, И потянулись дни испытаний. Уже через недели две я обнаружил, что в ящике с электрическим полем растения развиваются более эффективно, чем в ящике без "поля"! Спустя 15 лет этот эксперимент повторили в институте, когда потребовалось добиться выращивания растений в космическом корабле. Там, находясь в замкнутом от магнитного и электрического полей, растения развиваться не могли. Пришлось создавать искусственное электрическое поле, и теперь на космических кораблях растения выживают. А если вы живете в железобетонном доме, да еще на верхнем этаже, разве ваши растения в доме не страдают от отсутствия электрического (да и магнитного) поля? Суньте гвоздь в землю цветочного горшка, а проводок от него подсоедините к очищенной от краски или ржавчины отопительной батареи. В этом случае ваше растение приблизится к условиям жизни на открытом пространстве, что очень важно для растений да и для человека тоже!

Но на этом мои испытания не закончились. Проживая в г.Кировограде, я решил развести на подоконнике помидоры. Однако зима наступила столь быстро, что я не успел выкопать на огороде кусты помидор, чтобы пересадить их в цветочные горшки. Мне попался примерзший куст с небольшим живым отросточком. Я принес его домой, поставил в воду и... О, радость! Через 4 дня от нижней части отростка выросли белые корешки. Я пересадил его в горшок, и, когда он вырос с отростками, стал таким же методом получать новые саженцы. Всю зиму я лакомился свежими помидорами, выращенными на подоконнике. Но меня преследовал вопрос: неужели возможно в природе такое клонирование? Возможно, подтверждали мне старожилы в этом городе. Возможно, но...

Я переехал в Киев и попытался таким же образом получить саженцы помидор. У меня ничего не получилось. И я понял, что в Кировограде мне удавался этот метод потому, что там, в то время, когда я жил, в водопроводную сеть пускали воду из скважин, а не из Днепра, как в Киеве. Грунтовые воды в Кировограде имеют небольшую долю радиоактивности. Вот это и сыграло роль стимулятора роста корневой системы! Тогда я приложил к верхушке отростка помидора +1,5 В от батарейки, а "-" подвел к воде сосуда, где стоял отросток (рис.2), и через 4 дня на отростке, находящемся в воде, выросла густая "борода"! Так мне удалось клонировать отростки помидор.

Недавно мне надоело следить за поливом растений на подоконнике, я сунул в землю полоску фольгированного стеклотекстолита и большой гвоздь. К ним подсоединил провода от микроамперметра (рис.3). Сразу отклонилась стрелка, потому что земля в горшке была сырая, и сработала гальваническая пара "медь - железо". Через неделю увидел, как ток стал падать. Значит, наступала пора полива... Кроме того, растение выбросило новые листочки! Так растения реагируют на электричество.