Внутренние и внешние силы действуют. Силы, оказывающие воздействие на тело человека. Сила реакции опоры

Внешняя сила - это мера взаимодействия между телами. В задачах сопротивления материалов внешние силы считаются всегда заданными. К внешним силам относятся также реакции опор (связей).

Внешние силы делятся на объемные и поверхностные . Объемные силы при­ложены к каждой частице тела по всему его объему. Примером объемных сил являются силы веса и силы инерции. Часто задают простой закон изменения этих сил по объему. Объемные силы определяются их интенсивностью, как предел отношения равнодействующей сил в рассматриваемом элементарном объеме к величине этого объема, стремящего к нулю: \lim_{\Delta V\to0}{\Delta F \over \Delta V} и измеряются в Н/м 3 .

Поверхностные силы делятся на сосредоточенные и распределенные .
Сосре­доточенными считаются силы, приложенные к малой поверхности, размеры которой малы по сравнению с размерами тела. Однако при расчете напряжений вблизи зоны приложения силы нагрузку следует считать распределенной. К сосредоточенным нагрузкам относят не только сосредоточенные силы, но и пары сил, примером которых можно счи­тать нагрузку, создаваемую гаечным ключом при закручивании гайки. Сосредоточенные усилия измеряются в кН .
Распределенные нагрузки бывают распределенными по длине и по площади. К распределенным нагрузкам относят давление жидкости, газа или другого тела. Распределенные силы измеряются, как правило, в кН/м (распределенные по длине) и кН/м 2 (распределенные по площади).

Все внешние нагрузки можно разделить на статические и динамические .
Статическими считаются нагрузки, в процессе приложения которых возникающие силы инерции малы и ими можно пренебречь.
Если силы инерции велики (к примеру – землетрясение) – нагрузки считаются динамическими . Примерами таких нагрузок также могут служить внезапно приложенные нагрузки , ударные и повторно-переменные .
Внезапно приложенные нагрузки передаются на сооружение сразу
полной своей величиной (к примеру давление колес локомотива, входящего на мост).
Ударные нагрузки возникают при быстром изменении скорости соприкасающихся элементов конструкции, например» при ударе бабы копра о сваю при ее забивке.
Повторно-переменные нагрузки действуют на элементы конструкции, повторяясь значительное число раз. Таковы, например, повторные давления пара, попеременно растягивающие и сжимающие шток поршня и шатун паровой машины. Во многих случаях нагрузка представляет собой комбинацию нескольких видов динамических воздействий.

Внутренние силы

В результате действия внешних сил в теле возникают внутренние силы .
Внутренняя сила - силы взаимодействия между частями одного тела, возникающие под действием внешних сил.

Внутренние силы являются самоуравновешенными, поэтому они не видны и не влияют на равновесие тела. Определяют внутренние силы методом сечения.

Внешние нагрузки приводят к следующим видам напряженно-деформированного состояния:

  • Изгиб
  • Кручение

Системой материальных точек (или тел) называется любая, выделенная нами их совокупность. Каждое тело системы может взаимодействовать как с телами, принадлежащими этой системе, так и с телами, не входящими в нее. Силы, действующие между телами системы, называются внутренними силами. Силы, действующие на тела системы со стороны тел, не входящих в данную систему, называются внешними силами. Система называется замкнутой (или изолированной ), если она включает в себя все взаимодействующие тела. Таким образом, в замкнутой системе действуют только внутренние силы.

Строго говоря, замкнутых систем в природе не существует. Однако практически всегда можно так сформулировать задачу, чтобы внешними силами можно было пренебречь (из-за их малости или скомпенсированное™, т.е. взаимоуничтожения) по сравнению с внутренними. Выбор воображаемой поверхности, ограничивающей систему, является прерогативой (свободной волей) субъекта, т.е. должен осуществляться исследователем на основе анализа внутренних и внешних сил. Одна и та же система тел может считаться замкнутой или открытой в различных условиях, зависящих от постановки задачи и от заданной точности ее решения.

В замкнутой системе тел все явления описываются с помощью простых и общих законов, поэтому, если допускают условия задачи, то следует пренебречь малым действием внешних сил и рассматривать систему как замкнутую. Это и есть то, что часто называют физической моделью объективной реальности.

Частным случаем идеальной механической системы является абсолютно твердое тело, которое не может ни деформироваться, ни изменяться в объеме, ни тем более разрушаться (очевидно, что таких тел в природе нет): расстояние между отдельными материальными точками, образующими такую систему, остаются постоянными при всех видах взаимодействия.

Теперь введем очень важное в механике понятие центра масс (центра инерции) системы материальных точек. Возьмем систему, состоящую из N материальных точек. Центром масс механической системы называется точка С, радиус-вектор положения которой в произвольно выбранной системе отсчета задан соотношением:

где /и, - масса материальной точки; /; - радиус-вектор, проведенный из начала координат системы отсчета в точку, где находится т,.

Если поместить начало координат в точку С, то Rc = 0 и тогда

что приводит к другому определению центра масс: центр масс механической системы - это такая точка, для которой сумма произведений масс всех материальных точек, образующих механическую систему, на их радиус-векторы, проведенные из этой точки, как начала коор

динат, равны нулю. На рисунке 1.

Рис. 1.11.

1 это проиллюстрировано на примере системы, состоящей из двух тел (например двухатомной молекулы).

Радиус-вектор Rc этой системы МТ в декартовой системе координат имеет координаты Х с, Y c , Z c (общий трехмерный случай). При этом положение центра масс может быть определено следующими уравнениями :


где М - суммарная масса механической системы МТ,

До сих пор мы оперировали совокупностью N дискретных материальных точек. А как быть с определением центра масс протяженного тела, масса которого распределена в пространстве непрерывно? Естественно перейти в этом случае от суммирования в (1.68)-(1.70) к интегрированию. При этом в векторной форме мы получим


Для имеющих плоскость симметрии (как в примере) тел центр масс располагается в этой плоскости. Если тело обладает осью симметрии (ось х в нашем примере), то центр масс непременно должен лежать на этой оси, если тело обладает центром симметрии (например, как в случае однородного шара), то этот центр должен совпадать с положением центра масс.

Для того чтобы определить, как движется центр масс системы, запишем выражения (1.70) в виде

=MZ C и продифференцируем их дважды по времени (все мас-

сы полагаем постоянными)

Сопоставив полученные равенства с выражениями (1.51), получаем


или (в векторной форме)


Эти уравнения, называемые дифференциальными уравнениями движения центра масс, совпадают по структуре с дифференциальными уравнениями движения материальной точки. Это позволяет сформулировать теорему о движении центра масс: центр масс механической системы движется как материальная точка, масса которой равна массе всей системы и к которой приложены все внешние силы, действующие на систему.

Если на систему не действуют внешние силы т.е. действие внешних сил скомпенсировано), то

т.е. скорость движения центра масс замкнутой системы всегда остается постоянной (сохраняется). Внутренние силы на движение центра масс системы никакого воздействия не оказывают. Если, в частности, в данной инерциальной системе координат центр масс замкнутой системы в один из моментов времени покоится, то это значит, что он будет находиться в покое всегда.

Многие задачи механики решаются наиболее просто в системе координат, связанной с центром масс.

  • При выбранной в примере системе координат Zc = 0 (плоский одномерный случай).

ВНЕШНИЕ И ВНУТРЕННИЕ СИЛЫ . В механике внешними силами по отношению к данной системе материальных точек (т. е. такой совокупности материальных точек, в которой движение каждой точки зависит от положений или движений всех остальных точек) называются те силы, которые представляют собой действие на эту систему других тел (других систем материальных точек), не включенных нами в состав данной системы. Внутренними силами являются силы взаимодействия между отдельными материальными точками данной системы. Подразделение сил на внешние и внутренние является совершенно условным: при изменении заданного состава системы некоторые силы, ранее бывшие внешними, могут стать внутренними, и обратно. Так, например, при рассмотрении движения системы, состоящей из земли и ее спутника луны, силы взаимодействия между этими телами будут внутренними силами для этой системы, а силы притяжения солнца, остальных планет, их спутников и всех звезд будут внешними силами по отношению к указанной системе. Но если изменить состав системы и рассматривать движение солнца и всех планет как движение одной общей системы, то внешними силами будут только силы притяжений, оказываемых звездами; все же силы взаимодействия между планетами, их спутниками и солнцем становятся для этой системы силами внутренними.

Точно так же, если при движении паровоза выделим поршень парового цилиндра как отдельную систему материальных точек, подлежащую нашему рассмотрению, то давление пара на поршень по отношению к нему явится внешней силой, и то же давление пара будет одной из внутренних сил, если будем рассматривать движение всего паровоза в целом; в этом случае внешними силами по отношению ко всему паровозу, принятому за одну систему, будут: трение между рельсами и колесами паровоза, сила тяжести паровоза, реакция рельсов и сопротивление воздуха; внутренними силами будут все силы взаимодействия между частями паровоза, например, силы взаимодействия между паром и поршнем цилиндра, между ползуном и его параллелями, между шатуном и пальцем кривошипа, и т. п. Как видим, по существу нет различия между внешними и внутренними силами, относительное же различие между ними определяется лишь в зависимости от того, какие тела мы включаем в рассматриваемую систему и какие считаем не входящими в состав системы. Однако указанное относительное различие сил имеет весьма существенное значение при исследовании движения данной системы; по третьему закону Ньютона (о равенстве действия и противодействия), внутренние силы взаимодействия между каждыми двумя материальными точками системы равны по величине и направлены по одной и той же прямой в противоположные стороны; благодаря этому при разрешении различных вопросов о движении системы материальных точек возможно исключить все внутренние силы из уравнений движения системы и тем самым сделать возможным самое исследование о движении всей системы. Этот метод исключения внутренних, в большинстве случаев неизвестных, сил связи имеет существенное значение при выводах различных законов механики системы.

> Внутренние и внешние силы

Изучите внутренние и внешние силы системы. Рассмотрите влияние работы внутренних и внешних сил на линейный импульс системы, упругие и неупругие соударения.

Чистые внешние силы (не являющиеся нулем) изменяют общий импульс системы, а внутренние – нет.

Задача обучения

  • Отметить воздействие внешних и внутренних сил на линейный импульс и столкновения.

Основные пункты

  • Внешние силы создаются источником, расположенным вне системы.
  • Внутренние силы находятся в пределах системы.
  • Чтобы понимать, что считать внутренними, а что внешними силами, механическая система обязана располагать четкими границами.

Термины

  • Упругое соударение – эластичное столкновение с сохранением кинетической энергии.
  • Неупругое соударение – не эластичное столкновение без сохранения кинетической энергии.

Линейный импульс и столкновения

В изолированной системе, состоящей из частиц:

Где Второй закон Ньютона говорит о том, что полный импульс всей системы обязан быть стабильным при отсутствии чистых внешних сил. Они могут менять общий импульс, если их сумма не приравнивается к нулю. Но внутренние лишены такого влияния. Чтобы проанализировать механическую систему, необходимо четко разделить внутренние и внешние силы.

Сохранение полного импульса системы (пренебрегается потеря от силы трения)

Внешние силы создаются источником, расположенным за пределами системы, а внутренние – внутренними силами. Давайте упростим. У вас есть две хоккейные шайбы, скользящие по поверхности без трения. Уберем также из расчетов сопротивление воздуха. Они столкнулись при t = 0.

Начнем с перечисления присутствующих сил: сила тяжести, нормальная (между льдом и шайбами) и трение в период столкновения.

Как определить систему? Обычно нас интересует перемещение шайб. Тогда примем за факт, что располагаем исключительно двумя шайбами. За их пределами все становится внешней системой. Тогда внешними силами выступит сила тяжести и нормальная, а трение – внутренняя. Внешние компенсируют друг друга, так что мы их вычеркиваем. Получается, что суммарный импульс двух шайб выступает сохраненной величиной.

Стоит напомнить, что мы не рассматривали характер удара между шайбами. Даже не касаясь внутренних сил, удалось определить, что полный импульс системы выступает сохраняющейся величиной. Это работает в упругом и неупругом соударении.

Не забывайте: если учитывать Землю, то сила тяжести и нормальная станут внутренними.

Деформация, прочность и жесткость. Сопротивление материалов представляет собой часть механики, в которой рассматриваются вопросы расчета элементов конструкций на прочность, жесткость и устойчивость.

Сопротивление материалов опирается на знания теоретической механики. Но если объектом теоретической механики является абсолютно твердое тело, то в сопротивлении материалов рассматриваются деформируемые твердые тела.

На практике реальные части машин и сооружений подвергаются воздействию разного рода сил. Под действием этих сил происходит деформация тел, т.е. изменение взаимного расположения частиц материала. Если силы достаточно велики, возможно разрушение тела.

Способность тела воспринимать нагрузки без разрушения и больших деформаций называют соответственно прочностью и жесткостью.

Некоторые состояния равновесия тел и конструкций оказываются неустойчивыми, т.е. такими, при которых незначительные механические воздействия, как правило, случайного характера, могут привести к существенным отклонениям от этих состояний. Если же отклонения также невелики, то такие состояния равновесия называют устойчивыми.

Внешние силы. К внешним силам, действующим на конструкцию, относятся активные силы (нагрузки) и реакции внешних связей. Различают несколько видов нагрузок.

Сосредоточенная сила, приложенная в точке. Ее вводят вместо реальных сил, действующих на небольшой участок поверхности элемента конструкции, размерами которого можно пренебречь.

Распределенные силы. Например, силы давления жидкости на дно сосуда относятся к распределенным по поверхности нагрузкам и измеряются в единицах а силы веса - к нагрузке, распределенной по объему и измеряемой в . В ряде случаев вводят нагрузку, распределенную по линии, интенсивность которой измеряется в

Одним из вариантов нагрузок является сосредоточенный момент (пара сил).

Внутренние силы в стержне. Наиболее распространенным элементом конструкций является стержень, поэтому в сопротивлении материалов ему уделяют главное внимание.

Продольная ось и поперечное сечение - основные геометрические элементы стержня. Принимается, что поперечные сечения стержня

перпендикулярны продольной оси, а продольная ось проходит через центры тяжести поперечных сечений.

Внутренними силами стержня называют силы взаимодействия между его отдельными частями, возникающие под действием внешних сил (предполагается, что в отсутствие внешних сил внутренние силы равны нулю).

Рассмотрим стержень, находящийся в равновесии под действием некоторой системы внешних сил (рис. 1, а). Мысленно проведем произвольное поперечное сечение, которое делит стержень на две части Л и П. На правую часть П стержня со стороны левой части Л действует система распределенных по поверхности поперечного сечения сил - внутренних сил по отношению к стержню в целом. Эту систему сил можно привести к главному вектору и главному моменту М, взяв центр тяжести сечения - точку О - в качестве центра приведения.

Внутренние силовые факторы. Выберем систему координат, расположив оси х, у в поперечном сечении, а ось перпендикулярно ему, и разложим и М на составляющие по этим осям: (рис. 1, б).

Эти шесть величин называются внутренними силовыми факторами стержня (или внутренними усилиями) в рассматриваемом сечении. Каждое из этих усилий имеет свое название, соответствующее его направлению или определенному виду деформации стержня, который вызывается этим усилием. Силы называются поперечными (перерезывающими) силами, а -нормальной (продольной) силой. Моменты называются изгибающими моментами, а крутящим моментом.