Схема светодиодной подсветки чайника maxwell. Схемы подсветки электрических выключателей. Встречно-параллельное подключение двух светодиодов

Основной принцип работы электронагревательных устройств почти одинаков. Для нагрева нужно иметь нагревательный элемент - спираль, который играет в роль излучателя ИК лучей, благодаря которым происходит принудительный нагрев.

В электрочайниках реализована достаточно простая схема, основной элемент которой - ТЭН. В основном тут применяется плоский ТЭН, который расположен на дне чайника, под металлической крышкой. Сетевое напряжение поступает в спиталь, который имеет определенное сопротивление. Спираль расположен внутри тэна. Тепловая энергия от спирали передается к тэну, последний нагревает воду. Использование тэна объясняется тем, что он делает чайник безопасным, нет опасности поражения током, поскольку сам нагревательный элемент-спираль не имеет прямого контакта с водой, он не замкнут с тэном, поэтому ток не передается воде. В простейшем виде схема электрочайника выглядит так:

Электрочайник может иметь таймер (временное реле), терморегулятор, индикатор напряжения, выключатель питания. Более сложная принципиальная схема:

Терморегулятор имеет стандартную схему, если конечно чайник не из дорогих. Схема управления напряжением спирали, в более продвинутых моделях, достаточно проста - развязка из динистора и тиристора. Тиристор управляет нагрузкой, а динистор задает режим работы тиристора (по сути управляет тиристором). Динистор или диодный тиристор - это по сути диод, который имеет определенное напряжение срабатывания, которое задается при помощи регулятора. То есть, управляя напряжением, мы можем управлять температурой. Проще говоря, ТЭН нагревает воду до нужной температуры - вот и весь принцип работы электрочайника. В наши дни на рынке можно встретить электрочайники с полностью автоматическим управлением, которые будут нагревать воду до заданной температуры, затем отключатся автоматически. К ним относится группа чайников-термосов - термопот. Так как стоимость чайника-термоса довольно высока, то во многих случаях самостоятельный ремонт термопота не только оправдан, но и необходим. Схема блока управления и фото печатной платы с деталями показаны ниже:

Уже тестируются чайники с ультразвуковым нагревом - чайник, который не греется, но греет воду. Но пока не полностью изучено влияние таких чайников, поэтому в продаже они встречаются очень редко.

Схемы подсветки электрических выключателей. В продаже имеются выключатели с подсветкой, но заменять уже установленный без подсветки и еще исправный, редко кто соберется. Однако совсем не сложно


Схемы подсветки электрических выключателей.


В продаже имеются выключатели с подсветкой, но заменять уже установленный без подсветки и еще исправный, редко кто соберется. Однако совсем не сложно можно доработать любой выключатель своими руками, установив в него подсветку на светодиоде или неоновой лампочке.


Настенные выключатели с подсветкой конструктивно ничем не отличаются и также подключаются к электропроводке, как и обычные выключатели.


Потратив полчаса времени, желающий улучшить комфорт ночной жизни сможет дополнить выключатели в своей квартире подсветкой самостоятельно, даже не имея навыков электрика. Почитайте, как это сделать ниже, и у Вас все получится. Оборудовать выключатель подсветкой можно по трем простейшим схемам. Схемы отличается не только комплектацией, но и техническими характеристиками. Например, схема на светодиоде может не работать, если в светильнике установлены светодиодные лампы. А энергосберегающие лампы могут мерцать или слабо светиться в темноте. Рассмотрим подробно достоинства и недостатки каждой из схем.


Схема подсветки выключателя на светодиоде и сопротивлении.


В настоящее время в выключатели для подсветки устанавливаются, как правило, светодиоды, включенные в выключателе по ниже приведенной электрической схеме.


Когда выключатель находится в положении «Выключено» ток проходит через сопротивление R1, далее через светодиод VD2, который светится. Диод VD1 защищает VD2 от пробоя обратным напряжением. R1 любого типа мощностью более 1 Вт, номиналом от 100 до 150 кОм. При указанном на схеме номинале R1, ток протекает около 3 мА, что вполне достаточно для хорошо заметного свечения в темноте. Если же свечение светодиода будет недостаточным, то величину сопротивления нужно уменьшить. VD1 любого типа, VD2 любого типа и цвета свечения. Для того, чтобы разобраться в теории и самостоятельно рассчитать величину и мощность резистора то нужно ознакомившись со статьей «Закон силы тока».


Схему подсветки выключателя на светодиоде можно устанавливать, если в светильнике используется лампочки накаливания. Если стоят компактные люминесцентные (энергосберегающие), то не исключено, что в темноте Вы можете заметить их слабое свечение или мигание. Если в светильнике установлены светодиодные лампочки, то подсветка, сделанная по этой схеме может даже не работать, так как сопротивление светодиодной лампочки очень большее и ток достаточной силы для свечения светодиода может не создаться. В темноте возможно слабое свечение светодиодной лампочки. Схема очень простая, но имеет большой недостаток, потребляет много электроэнергии, около 1 кВт×часа в месяц. Вот так выглядит смонтированная схема.


Осталось только подсоединить к клеммам выключателя концы, которые смотрят вниз. Если Вы не допустили ошибки при монтаже, то схема сразу заработает. Я специально выложил фото на скрутках для тех, у кого нет возможности пропаять соединения паяльником. Для надежности и безопасности нужно все же пропаять скрутки и покрыть изолентой голые провода и резистор.


Схема подсветки выключателя на светодиоде и конденсаторе.


Для повышения КПД подсветки в выключателе можно в электрическую схему установить дополнительный конденсатор, уменьшив при этом номинал резистора R1 до 100 Ом.


Эта схема отличается от выше приведенной применением в качестве токоограничивающего элемента вместо резистора, конденсатора С1. R1 тут выполняет функцию ограничения тока заряда конденсатора. Сопротивление R1 можно применять от 100 до 500 Ом мощностью от 0,25 Вт. Вместо простого диода VD1 можно установить светодиод, такой же, как и VD2. КПД схемы не изменится, а светить будут сразу оба светодиода с одинаковой яркостью.


Достоинством схемы с конденсатором – малое энергопотребление, около 0,05 кВт×часа в месяц. Недостатки схемы такие же, как у выше представленной и в дополнение большие габаритные размеры.


Схема подсветки выключателя на неоновой лампочке (неонке)


Схема подсветки выключателя на неоновой лампочке (неонке) лишена недостатков, присущих выше представленных схемам подсветки на светодиодах. Такая схема подсветки выключателя подходит для выключателей люстры и любых других видов светильников, с установленными в них как лампочками накаливания, так и энергосберегающих люминесцентных и светодиодных ламп.


Когда выключатель разомкнут ток течет через сопротивление R1, газоразрядную лампочку HG1 и она светится. R1 любого типа мощностью более 0,25 Вт, номиналом от 0,5 до 1,0 МОм.


На фотографии Вы видите собранную схему подсветки выключателя, проще которой не бывает. Достаточно последовательно с неоновой лампочкой любого типа включить резистор и схема готова.


Где взять неоновую лампочку.


Неоновые газоразрядные лампочки (неонки) представлены широким рядом и можно использовать любую доступную из них. Обратите внимание, слева на фото газоразрядная лампочка с резистором номиналом 200 кОм, вынутая из вышедшего из строя выключателя компьютерного удлинителя, которые еще называют Пилот. Ее с успехом можно монтировать в любой выключатель без дополнительных хлопот по поиску комплектующих. Такие же лампочки с резистором устанавливают в электрочайниках, и других электроприборах для индикации включенного состояния. По центру фотоснимка неожиданно оказался Малогабаритный Тиратрон (триод) с Холодным катодом МТХ-90. Справедливости ради скажу, что тиратрон МТХ-90 в моём бра светит не один десяток лет.


Неоновые лампочки (неонки) окружают нас практически везде. В удивлены? Во всех старых светильниках с лампами дневного света используется стартер, это настоящая неоновая лампочка, помещенная в цилиндрический корпус. Для того, чтобы его извлечь из корпуса светильника, нужно цилиндр немного повернуть против часовой стрелки. Сколько в светильнике ламп дневного света, столько и стартеров. В стартере параллельно неоновой лампочке еще подключен конденсатор, он служит для подавления помех и при изготовлении индикатора не нужен.


Если стартер взят от старого светильника, прежде чем применить неоновую лампочку, не поленитесь проверить ее. Надо до монтажа подключить лампочку по вышеприведенной схеме. Лучше неонку брать из нового стартера, так как в старых стекло колбы лампочки изнутри, как правило, покрывается темным налетом и будет хуже видно свечение. Лампочка из стартера может быть с успехом использована при самостоятельном изготовлении индикатора фазы.


Готовый комплект подсветки для установки в настенный выключатель можно взять из неисправного современного электрического чайника. Как правило, в большинстве моделей имеется индикатор нагрева воды. Индикатор представляет собой неоновую лампочку, с которой последовательно включен токоограничивающий резистор и эта цепь включена параллельно ТЭНу. Если в Вашем хозяйстве завалялся неисправный электрический чайник, то неоновую лампочку с резистором можно извлечь из него и вмонтировать в выключатель.


На фотографии три неоновых лампочки от электрических чайников. Как видно светят они довольно ярко, поэтому в темноте будут в выключателе видны с большого расстояния.


Если внимательно присмотреться к изолирующим трубкам, надетым на места соединения выводов неоновой лампочки с проводами, то можно заметить на одной из трубок утолщение. В этом месте находится токоограничивающий резистор. Если трубку разрезать вдоль, то откроется картина, как на этой фотографии.


Пошаговая инструкция по установке в выключатель подсветки.


При выполнении работ с выключателем необходимо отключить подачу электроэнергии!


Неоновые лампочки бывают с цоколем и без цоколя, у которых выводы выходят прямо из стеклянной колбы. Поэтому и способ их монтажа несколько отличается.


Установка в выключатель неоновой лампочки с гибкими выводами.


Как правило, длины выводов у неоновой лампочки (неонки) или светодиода недостаточно для непосредственного подключения к клеммам выключателя и поэтому их надо удлинить отрезком медного провода. Эля этих целей подойдет как одножильный, так и многожильный провод любого сечения. Соединение провода с выводом лучше всего выполнить пайкой.


Перед пайкой выводы неоновой лампочки и концы проводника необходимо зачистить от окислов и залудить с помощью паяльника припоем. Затем примкнуть на длину не менее 5 мм и пропаять припоем.


Затем место пайки и вывод неоновой лампочки нужно заизолировать, надев на них изоляционную трубку. Можно просто навить пару витков изоляционной ленты.


Для удобства пайки конец припаянного проводника формируется с помощью круглогубцев в колечко и закрепляется на вывод выключателя.


Клавиши или крышки настенных выключателей обычно делают из белой пластмассы и свет от неоновой лампочки (неонки) или светодиода хорошо через них проходит. Его достаточно для видимости клавиши выключателя в темноте. Поэтому сверлить отверстие в выключателе против места установки подсветки не нужно.



На припаянный резистор тоже надевается изоляционная трубка или его изолируют изоляционной лентой. Конец вывода формируется в колечко и закрепляется на втором выводе выключателя.


Схема подсветки выключателя смонтирована, выключатель подключен к электропроводке, осталось только установить клавишу и работу можно считать законченной.


Установка в выключатель неоновой лампочки с цоколем.


Использовать патрон для подсветки нецелесообразно, так как срок службы неоновой лампочки (неонки) больше срока службы выключателя, да и места в коробке мало. Поэтому целесообразнее присоединить цоколь к схеме с помощью пайки.


Для этого нужно снять с проводов изоляцию, залудить оголенные концы и сделать небольшие петельки. Затем припаять к местам пайки выводов лампочки на цоколе.


К проводу, отходящему от центрального контакта цоколя, на расстоянии 2-3 см припаивается резистор. Выводы резистора нужно укоротить и сделать на концах петельки для провода. Ко второму выводу резистора тоже припаивается провод.


Резьбовую часть цоколя и резистор необходимо заизолировать. Это можно сделать с помощью термоусаживающейся трубки, изолирующей ленты или предлагаемым мною способом.


Многие хорошо поливинилхлоридную (ПВХ) трубку, которую часто применяют для изоляции проводов. Чтобы отрезок трубки (кембрик) не сползал, внутренний диаметры должен быть чуть меньше, чем изолируемая пайка. Всегда возникают сложности с поиском кембрика подходящего диаметра.


Но если кембрик подержать минут 15 в ацетоне, то он делается эластичным и легко надевается на деталь, превышающую его внутренний диаметр в полтора раза. Так я изолировал в далеком прошлом лампочки в самодельной новогодней гирлянде.


После испарения ацетона, кембрик опять возвращает свой исходный размер и плотно обтягивает цоколь лампы. Снять кембрик уже не возможно, разве если повторно размочить ацетоном. Такой способ изоляции является аналогом термоусаживающейся трубки, только не требуется нагрева.


После проведения подготовительных работ подсветка размещается в коробке выключателя и подключается к его контактам.



Если сопротивление резистора получилось большей мощности, а места для его установки недостаточно или под рукой такого нет, то можно его заменить несколькими резисторами меньшей мощности, включив их последовательно или параллельно.


При последовательном соединении резисторов одинакового сопротивления мощность, рассеиваемая на одном резисторе, будет равна расчетной мощности, деленной на количество резисторов, а их величина, уменьшится и будет равна расчетной величине, деленной на количество резисторов. Например, по расчету требуется резистор мощностью 1 ватт и номиналом 100 кОм. 1 кОм=1000 Ом. Этот резистор можно заменить двумя включенными последовательно резисторами мощностью 0,5 ватт номиналом по 50 кОм.


При параллельном соединении резисторов одинакового сопротивления мощность рассчитывается, как и при последовательном соединении, а номинал каждого резистора должен быть равен расчетному значению, умноженному на количество соединенных параллельно резисторов. Например, для замены одного резистора 100 кОм тремя, сопротивление каждого должно быть 300 кОм.


При монтаже схемы резистор (конденсатор) подключать только к фазному проводу выключателя. Так как токи, протекающие через элементы схемы, не превышают нескольких миллиампер, то особых требований к качеству контактов не предъявляется. Если коробка с выключателем, в которую будет монтироваться подсветка металлическая, то необходимо исключить возможность касания токопроводящих проводников ее стенок.


Что-либо испортить при установке подсветки в настенный выключателя невозможно, как сам светильник является ограничителем тока. Самое плохое, что может произойти, это выход из строя монтируемых элементов при допущении грубых ошибок. Например, светодиод включить без токоограничивающего резистора, или номинал резистора ошибочно вместо 100 кОм взять 100 Ом.


Калькулятор для расчета.


параметров токоограничивающего резистора.


При самостоятельной установке в выключатель подсветки на светодиоде или на неоновой лампочке необходимо определить величину и мощность токоограничивающего сопротивления. Расчет можно выполнить по формулам, но гораздо удобнее рассчитать параметры резистора по специальному калькулятору. Достаточно ввести параметры и получить готовый результат. Калькулятор может быть полезен и для выбора резистора в выключателе с подсветкой заводского изготовления, в случае выхода резистора из строя.

Электрический чайник стал незаменимым атрибутом любой кухни и является лидером продаж в сравнении с другой бытовой техникой. Данный прибор широко используется как дома, на кухне, так и в условиях офиса. Но к сожалению, как и любой электрический прибор, чайник через некоторое время эксплуатации выходит из строя. Поскольку цена на этот нагреватель воды не слишком высока, то проще купить новый, чем заниматься ремонтом. Но если вы считаете себя домашним мастером, или аппарат для кипячения воды дорог вам как память, можно попытаться произвести ремонт электрочайника своими руками.

Электрический чайник работает по достаточно простому принципу, независимо от того, дорогая ли это модель или бюджетная. В нижней части устройства находится ТЭН, соединенный с терморегулятором, состоящим из биметаллической пластины . Трубчатый нагреватель, при подаче на него электротока, разогревает жидкость до кипения. Когда в процессе кипения образуется пар, он проходит по специальному каналу к терморегулятору, в результате чего последний отключает подачу питания.

Если посмотреть на схему работы аппарата, то можно заметить, что он работает по принципу утюга, и не отличается сложностью конструкции. Но перед тем, как отремонтировать электрочайник, всегда возникают затруднения при разборке корпуса , поскольку у разных моделей агрегатов защелки (удерживающие ручку) располагаются по-разному, к тому же крепежные винты могут быть со шляпкой под специальную отвертку.

Типичные неисправности

Электрический чайник является простым устройством, в составе которого находится мало элементов, способных выйти из строя. Но все же существуют часто встречающиеся неполадки, среди которых можно выделить следующие:

  • медленный нагрев жидкости;
  • устройство отключается преждевременно;
  • чайник не отключается;
  • аппарат не включается;
  • перегорание ТЭНа;
  • протекает вода из корпуса.

Медленный нагрев жидкости

Если вы заметили, что чайник не нагревает воду быстро, то обратите внимание на состояние нагревательного элемента. Толстый слой накипи на нем, образовавшийся из-за недостаточно хорошего обслуживания агрегата, обладает плохой теплопроводностью, из-за чего требуется больше времени для нагрева воды. Если накипь не убрать, ТЭН может перегореть.

К тому же от перегрева страдает вся контактная группа аппарата, вследствие чего контакты оплавляются или подгорают.

Для избавления от накипи можно использовать обычную лимонную кислоту , продаваемую в магазинах. Достаточно всыпать в резервуар 1-2 пакетика лимонной кислоты (по 20 грамм), довести его до кипения и оставить нагретый раствор в емкости на 30 мин. После этого, емкость необходимо хорошо промыть проточной водой для удаления остатков накипи. При необходимости, процедуру можно повторить.

Устройство отключается преждевременно

Такое поведение электрического водонагревателя объясняется тем, что отключение аппарата может быть по причине накипи, образовавшейся на ТЭНе. Поскольку ТЭН имеет предохранитель от перегрева, то он срабатывает и разрывает электрическую сеть. Для устранения неисправности необходимо очистить нагреватели от накипи.

Чайник не отключается

Во время закипания воды в емкости аппарата, пар должен собираться под крышкой и направляться по специальному каналу к терморегулятору. Если крышка закрыта неплотно, то этого не происходит, и электроприбор будет работать без отключения. Если с крышкой все в порядке, проверьте, чтобы отверстие для пара, которое находится со стороны ручки, не было загрязнено накипью. В случае, когда и с отверстием все в порядке, можно предположить, что чайник не отключается по причине поломки терморегулятора .

Терморегулятор у электрочайника находится внизу корпуса, и, чтобы добраться до него для замены, придется разобрать устройство полностью.

Для примера был взят обычный бюджетный аппарат, который не отличается по конструкции от более дорогих моделей — электрочайника Vitek, Тефаль, Поларис, Скарлетт и прочих. Кстати, в этой модели, как и в аппарате Vitek VT-7009(TR), емкость изготовлена из термостойкого стекла . Итак, разберем агрегат по следующему алгоритму.


Но как разобрать чайник Bosch, если при откручивании всех винтиков на днище, оно не снимается? Те, кто разбирал подобный аппарат, сталкивались с трудностями, которые часто заканчивались поломкой устройства. Поскольку процесс довольно сложный для описания, то лучше посмотреть видео на эту тему.

Аппарат не включается

Причины того, что ваш аппарат для кипячения не включается, могут быть разными.

  1. Неисправность электрического шнура и вилки . Для этого потребуется “прозвонить” с помощью тестера шнур, прикасаясь щупами к контактам вилки и контактам на подставке (базе). Если обнаружен обрыв, следует заменить шнур на новый.
  2. Плохой контакт в подставке (базе). От длительной работы контакты могут подгорать, из-за чего нарушается их проводимость. Если на контактах образовалась гарь, их можно зачистить, использовав мелкую наждачную бумагу. Но в случае, когда они оплавились, то потребуется их полная замена.
  3. Неисправен внутренний выключатель в устройстве. Поскольку выключателю приходится испытывать достаточно большие нагрузки (от 1500 до 2000 Вт), то его контакты могут со временем оплавиться. Это может стать причиной того, что аппарат не работает. Находится выключатель внизу ручки, и выглядит при неисправности так, как показано на рисунке ниже.

В таком случае кнопка подлежит замене. Но существует неисправность кнопки, при которой можно починить чайник своими руками без ее замены. Если посмотреть на кнопку сбоку, то можно увидеть 2 контакта, которые в положении “включен” смыкаются. Если на них образуется нагар , то аппарат не включится.

Для устранения нагара можно использовать мелкозернистую наждачную бумагу, пилочку для ногтей или тонкий надфиль. Чтобы было удобнее делать зачистку, потребуется небольшая “доработка” кнопки, а именно, удаление с помощью кусачек бортиков.

Еще одной причиной того, что устройство не хочет работать, можно назвать неисправность механической кнопки включения . Эта поломка чаще всего встречается в модели Tefal vitesse, так как в ручке электроприбора встроены пластиковые реечки, которые передают поступательное движение от наружной кнопки к внутренней, расположенной в нижней части агрегата.

После того, как эта деталь сломается, включение чайника Tefal становится невозможным. Чтобы подробнее понять, как отремонтировать элемент, который сломался, можно посмотреть видео , где рассмотрен один оригинальный способ исправления дефекта.

Перегорание ТЭНа

При ремонте электрических чайников, как старых моделей, так и более новых, наиболее распространенной поломкой является перегорание нагревательного элемента. Проблема с тэнами возникает, в первую очередь, из-за их перегрева при несвоевременном удалении накипи.

Перед тем, как починить чайник с дисковым нагревателем или ТЭНом в виде спирали, необходимо разобрать агрегат вышеописанным способом. После этого, возьмите тестер и подсоедините щупы прибора к выходным контактам нагревателя. Если на приборе загорелась лампочка, или он издает звук, то ТЭН можно считать исправным.

Как проверить ТЭН, если нет измерительного прибора ? Оказывается, очень просто. Необходимо к одному контакту нагревателя подсоединить ноль от электросети, а к другому – фазу. Далее, вставьте лампочку на 220 в патрон, из которого выведены 2 изолированных провода. Прикоснитесь одним зачищенным концом провода к одному контакту нагревателя, а другим – к противоположному. Если лампочка засветилась – значит ТЭН исправен.

В случае, если выяснилось, что дисковый нагреватель перегорел, то замене он не подлежит, поскольку является одним целым с днищем электроприбора, как например, в чайнике Scarlett, или Vitek VT-7009(TR). Поэтому придется покупать новый агрегат. Замене подлежит только ТЭН открытого типа.

Протекает вода

Если вы заметили, что из резервуара устройства течет (просачивается) вода, то рекомендуется попользоваться таким аппаратом некоторое время, пока в микротрещинах не образуется накипь, которая может перекрыть просачивание жидкости. Если это не поможет, то придется покупать новый “кипятильник”, если истек гарантийный срок.

Еще одной причиной того, что протекает резервуар, может быть неплотное соединение электронагревателя с корпусом устройства (если ТЭН открытого типа). В таком случае можно подтянуть крепеж, удерживающий его. Если это не помогло, тогда придется снять ТЭН и поменять резиновую уплотнительную прокладку, которая износилась.

Таким образом, можно подвести итог: отремонтировать агрегат для кипячения воды своими силами в некоторых случаях вполне возможно. Но если у вас не хватает определенных навыков в ремонте бытовой техники, то лучшим вариантом будет покупка нового чайника. Ремонт в сервисном центре, с финансовой точки зрения, себя не оправдывает, и нет никакой гарантии, что поломка не повторится.

Электрочайники – термосы, или термопоты, исправно служат 2 – 3 года, затем обычно выходят из строя. Основные причины этого: перестают кипятить воду, не наливают кипяток и из-за протекания воды. В Интернете много материалов о ремонте термопотов, но почти нет схем. В статье кратко описаны модели термопотов, схемы которых срисованы с изделий, с неисправностями которых автор сталкивался при ремонте. В статье приведены примеры схемных решений, применённых в большинстве моделей современных термопотов, несмотря на большое количество клонов, выпускаемых различными фирмами..

На приведённых схемах обозначения большинства деталей соответствуют указанным на платах. У разных моделей термопотов схемы вторичного электропитания и блоков управления сильно отличаются. Все термопоты имеют емкость для кипячения воды из нержавеющей стали. В её нижней части закреплены термоэлектронагреватели, ТЭН-ы, обычно их два, для кипячения и подогрева воды, в этом случае они находятся в одном блоке, который имеет три вывода. На дне емкости закреплен термовыключатель на температуру 88 – 96 град.С или термодатчик, подающие сигнал для отключения ТЭН-а кипятильника при достижении нужной температуры воды. На боковой стенке емкости закреплены включённые последовательно термовыключатель на температуру 102 – 110 град.С и предохранитель FU на 125 град.С/10А, помещённый в силиконовую трубку. Они отключают электропитание термопота при повышении температуры емкости для кипячения из-за отсутствии воды или в случае короткого замыкания. Для подачи горячей воды в термопотах используют однотипные электродвигатели постоянного тока на напряжение 12 В, с центробежным насосом.

Большинство деталей термопотов размещено на двух платах. Плата управления, на которой расположены кнопки управления и светодиоды находится в верхней части корпуса. Основная плата, на которой находятся большинство силовых разъёмов, блоки управления, реле, источники и стабилизаторы вторичного напряжения находится в нижней части корпуса под ёмкостью для кипячения воды. Обе платы соединяются между собой жгутами проводов с разъёмами.

Схема термопота Elenberg ТН-6030, приведена на Рис. 1. Ранее, в 2014 году автор выкладывал её на сайте go-radio, поэтому дана ссылка на этот сайт. Схема ТН-6030 достаточно простая и полностью аналоговая. Постоянно через ТЭН подогрева воды ЕК1 и диод VD9 течёт пульсирующий ток только в одном направлении, поэтому сопротивление этого ТЭН-а в два раза меньше, чем аналогичного, той же мощности ТЭН-а подогрева в других моделях, где он питается переменным током. При включении электромотора, через него и диод VD10 начинает течь постоянный пульсирующий ток другой полярности, до 150 мА, а через ТЭН ЕК1 идёт переменный ток. Автоматическое включение и выключение ТЭН-а кипячения воды ЕК2, производится термовыключателем SF1. Принудительное включение ТЭН-а ЕК2 длительностью до 2-х минут производится контактами К1.1 реле К1. На транзисторы VT1 – VT2 каскада управления реле К1 постоянное напряжение 14 В, стабилизированное цепочкой R3 и VD6, подаётся с диодного моста VD1 – VD4. Частой неисправностью этой модели термопота является выгорание контактов термовыключателя SF1, потому что через него проходит весь ток ТЭН-а ЕК2. Заменить термовыключатель не сложно, надо отвернут два винта на фланце, и переставить два силовых разъёма. Подробные видеозаписи этой замены есть в Интернете.

Другая неисправность, плохая работы насоса подачи горячей воды. Её причина – увеличение трения оси ротора электромотора, работающего при повышенной температуре из-за ухудшения качества смазки. Магнитная муфта сцепления насоса состоит из магнитного диска, надетого на вал ротора электромотора и крыльчатки насоса, надетую на полуось в крышке корпуса насоса. В основании крыльчатки также закреплён магнитный диск. Между двумя магнитными дисками установлена герметичная прокладка. Рис. 2.

Автор смазывал точки опоры ротора на торцах корпуса электромотора обычным веретенным маслом. Помогало на пару месяцев. Трудно добраться до передней точки опоры, приходилось разбирать насос и заливать масло под магнитный диск, и проворачивать его пальцем, в этот момент электромотор находится в вертикальном положении, чтобы масло затекло в нужное место. Остатки масла сливают через край. Снимать диск с оси ротора не надо, пара съёмов и он не будет держаться на оси ротора. Проще сразу заменить двигатель с насосом.

Протечки воды в термопотах возникают редко, обычно вследствие механических повреждений. Однажды причиной появления воды под чайником оказалась малозаметная трещина в верхней части пластмассового корпуса, под крышкой, проходящая вдоль закраины ёмкости для кипячения воды. В эту щель проникал пар, который затем конденсировался на внутренней поверхности стенок корпуса, пластик вдоль трещины крошился. Тот чайник ремонту не подлежал.

Схема термопота Vitek VT-1188 показана на рис. 3. В этой модели вторичное напряжение 12 - 14 В на блоки управления подаётся с трансформатора Т1, установленного внизу корпуса под ёмкостью для воды, и с выпрямительного моста VD1 – VD4. Напряжение 5 В со стабилизатора ic2 поступает для питания процессора ic1, который управляет всей работой термопота. По команде оптопары ic3 процессор ic1 должен сигнализировать о срабатывании защиты, SF1 или FU1, хотя, непонятно как -- зуммер в этой модели не установлен. На дне ёмкости для кипячения установлен термодатчик RT из двух соединённых параллельно термисторов MF58 отрицательным ТКС в корпусах КД-3. Температуру отключения кипятильника устанавливается вручную кнопкой sw2. Термопоты VT-1188 и VT-1187 не имеют ТЭН-а для подогрева воды, из-за чего включение и выключение ТЭН-а для кипячения, ЕК1 происходит чаще, чем в других моделях. Поэтому у VT-1188 чаще сгорают контакты реле и перегорает ТЭН. Случай выгорания крепёжного вывода реле на плате описан в . При возникновении всех этих неисправностей у чайника нормально работают индикация, двигатель насоса, нет только кипячения воды. При пригорании и залипании контактов реле, или пробое транзистора Q1, может не отключаться режим кипячения. При ремонте этих поломок неисправные детали заменяют.

Фотография основной платы VT-1188. Рис. 4.

Схема термопота VT-1191 показана на Рис. 5. Источник вторичного напряжения для блоков управления импульсный, сделан на микросхеме VIPer 12A по бестрансформаторной схеме. Постоянное напряжение 18 В на его выходе фильтруется конденсаторами EL3, C3 и дросселем L2, затем понижается стабилитроном ZD2 до 12 В. Схема управления работает на процессоре ic1, маркировки на его корпусе нет, имеется только этикетка с указанием модели термопота. Напряжение 5 В на ic1 подается со стабилизатора на транзисторе Q4 и стабилитроне ZD3. В термопоте VT-1191 имеется два ТЭН-а: ЕК1 для кипячения и ЕК2 для подогрева воды. Контакты К1,1 реле К1 поочерёдно подключают выводы одного из них к сети в зависимости от напряжения на выводе №5 ic1, которое через разъём CN1, светодиод HL2 и R7 поступает на базу транзистора Q1. Через термовыключатель SF2 протекает небольшой базовый ток транзистора Q2, поэтому SF2 соединён с платой, и выводом № 4 ic1 слаботочным разъёмом. Электромотор включается транзистором Q3 при появлении «+» на выводе №3 ic1. Неисправность термопота проявлялась в том, что он не кипятил и не наливал воду, горел только зелёный индикатор HL3. Причиной поломки был выход из строя процессора ic1.

Рис.6 Фотография основной платы VT-1191, закреплённой в корпусе термопота.

Советов по ремонту термопотов дано уже много, но я добавлю ещё два:

1) Фотографировать весь процесс разборки и ремонта чайника. Это потом облегчит его последующую сборку и особенно, установку силовых разъёмов. (Рис. 6).

2) Если корпуса слаботочных разъёмов, установленных на платах, даже незначительно шатаются на своих местах, эти корпуса надо приклеить к плате и пропаять контакты. Нарушение контактов разъёмов после ремонта и сборки термопота может привести к появлению новых неисправностей.

Список литературы

  • «Ремонт реле электрочайника Vitek VT-1188»
  • Журнал «Радио» 2016-8-35.

Светодиодная подсветка под шкафами на кухне — это эргономично, красиво и современно. В статье мы расскажем о том, как правильно выбрать элементы системы, какие схемы соединения бывают, как установить ленту в качестве самостоятельного элемента и в специальном коробе (профиле).

Выбор светодиодной ленты для подсветки под шкафы — интересное, эффектное и не слишком сложное для домашнего мастера решение. Такое дополнительное освещение, несомненно, выполняет и эстетические задачи — выделяет отдельные функциональные зоны, акцентирует цветом декоративные элементы, задаёт модный, современный тон дизайну кухни.

Выбор светодиодной ленты

Важной характеристикой светодиодной ленты для монтажа под шкафы на кухне является устойчивость к парам воды. Недостаточная влагозащищённость может привести к короткому замыканию, а, значит, и к риску возникновения пожара. При покупке ленты нужно обращать внимание на степень защиты оболочки, которая маркируется двузначным числом после латинских букв IР. Первая цифра указывает на защиту от пыли и грязи, механических повреждений. Вторая цифра — защита от влаги. Оценивается защищённость прибора или устройства по шкале от 0 до 9 по обоим параметрам.

По герметичности (влаго- и пылезащищённости) светодиодные лампы и ленты могут иметь маркировку:

  • IР33 — открытый тип токопровода, для кухонь не рекомендуется;
  • IР65 — односторонняя герметичность той стороны, на которой размещены электронные элементы, допускается для монтажа во влажной среде кухонного пространства;
  • IР67, IP68 — двухсторонняя, полная герметичность ленты — рекомендуется для монтажа на кухне.

Если у выбранной лампы или ленты со светодиодами недостаточная защищённость, необходимо использовать защитный плафон или специальные профили, чтобы в совокупности обеспечить должный уровень безопасности.

Чтобы светодиодная лента давала достаточно света, важно правильно выбрать удельную мощность, которая характеризуется количеством светодиодов на погонный метр. Каждый тип ленты может иметь различное число светодиодов. Это можно определить и визуально, и ознакомившись с характеристикой изделия.

Для декоративных целей обычно достаточно 30 или 60 светодиодов на метр. Чтобы полноценно осветить рабочую поверхность, лучше выбрать ленту со 120 или 240 диодами.

Подсчитывая освещённость, нужно учитывать потребляемую лентой мощность, помня, что по сравнению с лампами накаливания, световой поток светодиодов выше примерно в 5 раз.

Таблица. Расчёт мощности ленты

Цифры в маркировке ленты обозначают размер одного светодиода:

  • SMD-3528 — диоды размером 3,5х2,8 мм;
  • SMD-5050 — диоды размером 5,0х5,0 мм.

Для монохромных лент с указанными характеристиками световой поток, измеряемый в люменах и являющийся ещё одной характеристикой светодиодов, будет максимальным. Для полихромных лент RGB, цвет которых задаётся в зависимости от установок регулятора или контроллера управления, общее количество кристаллов в каждом диоде соответствует комбинации базовых цветов, включающихся не одновременно. Следовательно, при работе только части кристаллов, дающих определённый цвет, световой поток будет ниже.

Цвета монохромных диодов с собственным свечением кристалла бывают:

  • красный;
  • оранжевый;
  • жёлтый;
  • зелёный;
  • синий;
  • фиолетовый.

Цвет монохромных диодов характеризуется узким спектром свечения, что стоит учитывать при выборе подсветки. Цвет предметов и, главное, продуктов существенно искажается, они могут выглядеть не так как под естественным светом или освещенные люминесцентными лампами.

Белый монохромный светодиод представляет собой полупроводник, излучающий ультрафиолет с покрытием люминофором. Принцип действия аналогичен привычным для большинства люминесцентным лампам. Оттенок так же может быть от «тёплого» до «холодного» и указывается в виде соответствующей температуры свечения, измеряемой в Кельвинах как у привычных светодиодных ламп .

Цвет поверхности печатной платы, на которой расположены светодиоды, обычно белый, однако можно подобрать и другие цвета: коричневый, жёлтый, чёрный, которые будут лучше смотреться на мебели при открытой установке. Для удобства монтажа лента снабжена клейкой лентой на обратной стороне.

Выбор блока питания и дополнительных устройств

Включать светодиодную ленту в бытовую розетку нельзя — сразу же сгорит. Рассчитана она на работу при постоянном токе с напряжением 24 или 12 В, полученный через соответствующий импульсный преобразователь (блок питания). Мощность устройства должна соответствовать совокупной потребляемой мощности всех подключённых лент. Например, нужно подключить три бобины по 5 м SMD-5050, мощностью 7,2 Вт/пог. м. Совокупная мощность составляет:

5 м · 7,2 Вт/пог. м = 36 Вт

Блок питания выбирают с запасом в 20%, следовательно, понадобится устройство мощностью не менее 45 Вт.

Конструкция блока может быть разной:

  1. Герметичный, компактный блок в пластиковом корпусе.
  2. Герметичный блок питания в алюминиевом корпусе. Дорогой, климатоустойчивый, часто используется в наружном, уличном освещении.
  3. Открытый блок в перфорированном корпусе. Наиболее габаритный, недорогой, требует дополнительной защиты от прямого попадания влаги. Есть мощные модели — достаточно одного блока для всей подсветки.
  4. Сетевой блок питания. Небольшая мощность, до 60 Вт, не требует монтажа. Для нескольких лент потребуются отдельные блоки питания.

Блок питания для кухни должен быть влагоустойчивым или устанавливаться в месте, защищённом от влаги. Желательно, чтобы драйвер содержал защиту от перепадов напряжения, что продлевает срок службы светодиодов.

Светодиодные ленты не рекомендуется соединять последовательно, иначе износ будет высокой, а светимость неравномерной. При подключении нескольких лент правильно использовать усилитель, обеспечивающий равномерную токоподачу на различные участки электрической цепи.

При желании, подсветка может подключаться через диммер — устройство, плавно понижающее мощность и светимость осветительных приборов. Так можно поддерживать подсветку в режимах «работа» и «отдых».

Для управления светодиодной лентой используются ШИМ-контроллеры, способные обеспечить правильную форму пульсирующего тока для регулировки яркости светодиодов

Усилители и диммеры подбираются к системе подсветки по силе тока.

Схемы подключения светодиодной подсветки

Основные правила соединения элементов подсветки в схему и монтажа:

  • соблюдайте полярность;
  • питайте через блок питания с напряжением 12 или 24 В в соответствии с типом ленты и маркировкой, размещая его как можно ближе к ленте (максимальное удаление — 10 м);
  • ленту не стоит круто изгибать, перекручивать. Лучше разрезать и выполнить угол пайкой (с осторожностью, заизолировав затем токопроводящие дорожки термоусадочной трубкой) или специальным коннектором. Пайка, по мнению мастеров, обеспечивает контакт без электрических потерь;
  • чем меньше соединений и чем толще сечение провода, тем меньше потерь электрического тока;
  • ленту высокой мощности лучше монтировать в профиль (короб);
  • отрезки лент длиннее 5 м соединять только параллельно;
  • блок питания располагайте в вентилируемом месте, защищая его от перегрева.

Места, в которых светодиодную ленту можно разрезать, обычно показаны на самом изделии.

Ниже приведены основные схемы соединения для монохромных и RGB-лент.

Схема прямого подключения светодиодной ленты. Несоклько лент подключаются параллельно к одному источнику тока

Подключение светодиодной ленты с использованием диммера для регулировки яркости

Несоклько светодиодных лент, включенные с использованием диммера или ШИМ-контроллера, должны подключаться с помощью усилителя

Схема подключения светодиодных лент RGB

RGB-ленты подключают к контроллеру четырьмя проводами, три из которых отвечают за один из цветов, четвёртый является общим. Маркировка: R — red (красный цвет), G — green (зелёный), В — blue (голубой). Провод «V-плюс» — общий. Подключение проще всего выполнить с помощью коннектора, но можно и аккуратно припаять. Для автономного подключения контроллера и усилителя иногда в схеме соединения используют два блока питания.

Инструменты и материалы для монтажа светодиодных лент

Для самостоятельной установки светодиодной ленты под кухонные шкафы потребуется:

  • соединение элементов можно выполнить различными способами , при этом потребуются: паяльник, припой, канифоль и термоусадочная трубка, или наконечники для проводов и обжим для наконечников, или коннекторы;
  • ножницы;
  • изоляционная лента, двухсторонний скотч, элементы крепежа;
  • инструмент для выпиливания отверстий в мебели для прокладки проводов, например — электролобзик;
  • выбранные светодиодные ленты;
  • блок питания и другие элементы электросхемы, при необходимости — диммер, усилители, контроллер;
  • короб (профиль) — при выполнении соответствующего монтажа;
  • кабель.

Важно понимать, что светодиоды все равно выделяют тепло во время свечения. Направлено оно в подложку, основу диода. Чтобы не допустить перегрева полупроводников, из-за чего существенно снижается их срок службы, желательно приклеивать ленту на специальный алюминиевый профиль или подложку с высокой теплопроводностью.

Выбор сечения кабеля

Как правило, для установки подсветки на кухне используют кабель сечением 0,5-2,5 мм 2 .

  • I — сила тока, I = P/U или I = U/R (P — мощность, U — напряжение, R — сопротивление);
  • ρ — удельное сопротивление, для медного кабеля ρ = 0,0175 Oм·мм 2 /м;
  • L — длина кабеля;
  • ΔU — максимально допустимый перепад напряжения между блоком питания (БП) и нагрузкой (лентами), ΔU = U БП -UΣ лент, если напряжение БП — 12 В и лент — 12 В, то ΔU принимают в 5-10%, т. е. 0,6-1,2 В.

Сечение кабеля зависит и от длины проводки, чем длиннее провод, тем меньше мощности подведётся к источнику света, что видно из следующей таблицы:

Длина проводов, м Мощность, выделяемая на нагрузке, Вт
Сечение провода
1,5 мм 2 2,5 мм 2 4 мм 2 6 мм 2
0 50,0 50,0 50,0 50
2 45,5 47,2 48,2 48,8
4 41,5 44,6 46,5 47,7
6 38,1 42,3 44,9 46,5
8 35,0 40,1 43,4 45,5
10 32,4 38,1 42,0 44,4

Монтаж светодиодной ленты под кухонные шкафы

Основой хорошо проведённой установки является продуманное планирование — как выбрать, где и какие элементы схемы расположить.

Светодиод даёт направленный пучок света, чаще всего это сектор 120° строго по центральной оси полупроводника. Реже встречаются варианты на 90°, 60° и 30°. Закрепив ленту снизу подвесного шкафчика и отступив от стенки, на вертикальной поверхности образуется весьма четкая полоса, притом волнистая между светом и тенью, что может пагубно сказаться на общей картине.

Нужно распределять источник света так, чтобы разделительная полоса света и тени от подсветки приходилась на естественную границу, например, между окантовкой рабочей поверхности и облицовкой стены. В самом простом случае ленту монтируют впритык к стене, чтобы осветить её полностью. Подбирая различные варианты, можно с выгодой для общего дизайна поработать с визуальной «глубиной» рабочей поверхности.

Ленты с диодами, имеющие узкий сектор освещения, можно крепить на самом краю под шкафом, чтобы стена вовсе не освещалась. Универсальным способом по распределению света является использование алюминиевых профилей со светорассеивающими защитными плёнками. Даже высотой бортиков профиля при желании можно сформировать требуемую форму пятна освещённости.

Сам монтаж, при некотором навыке работы с инструментом, не представляет большой сложности.

  1. Пропускаем кабель к месту соединения, как можно незаметнее, высверливая на тыльной стороне шкафа отверстие небольшого диаметра.
  2. Светодиодную ленту небольшой мощности можно крепить непосредственно на подготовленную и обезжиренную поверхность нижней части кухонных шкафчиков. Ленты отмеренной длины, имеющие клеящий слой, просто прикладывают к выбранному месту и прижимают, снимая защитную пленку непосредственно перед монтажом. Если такого слоя нет — понадобится двусторонний скотч. Чтобы замаскировать ленту, можно оградить её профилем в тон шкафа.
  3. Закрепляем блок питания, делаем электрическую разводку, аккуратно закрепляя провода с помощью клипс или двустороннего скотча.
  4. Соединяем все элементы в схему, обязательно проверяем тестером проводку на короткое замыкание между питающими проводами и только после этого подключаем к сети. Подсветка готова.

Если ввиду повышенной мощности или из эстетических соображений планируется установка ленты в профиль, то сначала проще уложить светодиодную ленту в профиль и подключить выводы питания. После этого с помощью двустороннего скотча профиль закрепляется на шкафчиках. Придётся менять последовательность только в том случае, если профиль крепится с помощью саморезов, вкрученных с его внутренней стороны впотай.

На следующем видео тот же мастер, что и в предыдущем ролике, даёт советы о монтаже ленты в короб.