Число делится на 12 если. Основные признаки делимости. Признаки делимости натуральных чисел

Признак делимости на 2
Число делится на 2 тогда и только тогда, когда его последняя цифра делится на 2, то есть является чётной.

Признак делимости на 3
Число делится на 3 тогда и только тогда, когда сумма его цифр делится на 3.

Признак делимости на 4
Число делится на 4 тогда и только тогда, когда число из двух последних его цифр нули или делится на 4.

Признак делимости на 5
Число делится на 5 тогда и только тогда, когда последняя цифра делится на 5 (то есть равна 0 или 5).

Признак делимости на 6
Число делится на 6 тогда и только тогда, когда оно делится на 2 и на 3.

Признак делимости на 7
Число делится на 7 тогда и только тогда, когда результат вычитания удвоенной последней цифры из этого числа без последней цифры делится на 7 (например, 259 делится на 7, так как 25 - (2 · 9) = 7 делится на 7).

Признак делимости на 8
Число делится на 8 тогда и только тогда, когда три его последние цифры - нули или образуют число, которое делится на 8.

Признак делимости на 9
Число делится на 9 тогда и только тогда, когда сумма его цифр делится на 9.

Признак делимости на 10
Число делится на 10 тогда и только тогда, когда оно оканчивается на ноль.

Признак делимости на 11
Число делится на 11 тогда и только тогда, когда сумма цифр с чередующимися знаками делится на 11 (то есть 182919 делится на 11, так как 1 - 8 + 2 - 9 + 1 - 9 = -22 делится на 11) - следствие факта, что все числа вида 10 n при делении на 11 дают в остатке (-1) n .

Признак делимости на 12
Число делится на 12 тогда и только тогда, когда оно делится на 3 и на 4.

Признак делимости на 13
Число делится на 13 тогда и только тогда, когда число его десятков, сложенное с учетверённым числом единиц, кратно 13 (например, 845 делится на 13, так как 84 + (4 · 5) = 104 делится на 13).

Признак делимости на 14
Число делится на 14 тогда и только тогда, когда оно делится на 2 и на 7.

Признак делимости на 15
Число делится на 15 тогда и только тогда, когда оно делится на 3 и на 5.

Признак делимости на 17
Число делится на 17 тогда и только тогда, когда число его десятков, сложенное с увеличенным в 12 раз числом единиц, кратно 17 (например, 29053→2905+36=2941→294+12=306→30+72=102→10+24=34. Поскольку 34 делится на 17, то и 29053 делится на 17). Признак не всегда удобен, но имеет определенное значение в математике. Есть способ немного попроще – Число делится на 17 тогда и только тогда, когда разность между числом его десятков и упятеренным числом единиц, кратно 17(например, 32952→3295-10=3285→328-25=303→30-15=15. поскольку 15 не делится на 17, то и 32952 не делится на 17)

Признак делимости на 19
Число делится на 19 тогда и только тогда, когда число его десятков, сложенное с удвоенным числом единиц, кратно 19 (например, 646 делится на 19, так как 64 + (6 · 2) = 76 делится на 19).

Признак делимости на 23
Число делится на 23 тогда и только тогда, когда число его сотен, сложенное с утроенным числом десятков, кратно 23 (например, 28842 делится на 23, так как 288 + (3 * 42) = 414 продолжаем 4 + (3 * 14) = 46 очевидно делится на 23).

Признак делимости на 25
Число делится на 25 тогда и только тогда, когда две его последние цифры делятся на 25 (то есть образуют 00, 25, 50 или 75)или число кратно 5.

Признак делимости на 99
Разобьем число на группы по 2 цифры справа налево (в самой левой группе может быть одна цифра) и найдем сумму этих групп, считая их двузначными числами. Эта сумма делится на 99 тогда и только тогда, когда само число делится на 99.

Признак делимости на 101
Разобьем число на группы по 2 цифры справа налево (в самой левой группе может быть одна цифра) и найдем сумму этих групп с переменными знаками, считая их двузначными числами. Эта сумма делится на 101 тогда и только тогда, когда само число делится на 101. Например, 590547 делится на 101, так как 59-05+47=101 делится на 101).

Признак делимости

При́знак дели́мости - правило, позволяющее сравнительно быстро определить, является ли число кратным заранее заданному без необходимости выполнять фактическое деление. Как правило, основано на действиях с частью цифр из записи числа в позиционной системе счисления (обычно десятичной).

Существуют несколько простых правил, позволяющих найти малые делители числа в десятичной системе счисления:

Признак делимости на 2

Признак делимости на 3

Признак делимости на 4

Признак делимости на 5

Признак делимости на 6

Признак делимости на 7

Признак делимости на 8

Признак делимости на 9

Признак делимости на 10

Признак делимости на 11

Признак делимости на 12

Признак делимости на 13

Признак делимости на 14

Признак делимости на 15

Признак делимости на 17

Признак делимости на 19

Признак делимости на 23

Признак делимости на 25

Признак делимости на 99

Разобьем число на группы по 2 цифры справа налево (в самой левой группе может быть одна цифра) и найдем сумму этих групп, считая их двузначными числами. Эта сумма делится на 99 тогда и только тогда, когда само число делится на 99.

Признак делимости на 101

Разобьем число на группы по 2 цифры справа налево (в самой левой группе может быть одна цифра) и найдем сумму этих групп с переменными знаками, считая их двузначными числами. Эта сумма делится на 101 тогда и только тогда, когда само число делится на 101. Например, 590547 делится на 101, так как 59-05+47=101 делится на 101).

Признак делимости на 2 n

Число делится на n-ю степень двойки тогда и только тогда, когда число, образованное его последними n цифрами, делится на ту же степень.

Признак делимости на 5 n

Число делится на n-ю степень пятёрки тогда и только тогда, когда число, образованное его последними n цифрами, делится на ту же степень.

Признак делимости на 10 n − 1

Разобьем число на группы по n цифр справа налево (в самой левой группе может быть от 1 до n цифр) и найдем сумму этих групп, считая их n-значными числами. Эта сумма делится на 10 n − 1 тогда и только тогда, когда само число делится на 10 n − 1 .

Признак делимости на 10 n

Число делится на n-ю степень десятки тогда и только тогда, когда n его последних цифр -

Признаки делимости чисел – это правила, позволяющие не производя деления сравнительно быстро выяснить, делится ли это число на заданное без остатка.
Некоторые из признаков делимости довольно просты, некоторые сложнее. На этой странице Вы найдете как признаки делимости простых чисел, таких как, например, 2, 3, 5, 7, 11, так и признаки делимости составных чисел, таких, как 6 или 12.
Надеюсь, данная информация будет Вам полезной.
Приятного обучения!

Признак делимости на 2

Это один из самых простых признаков делимости. Звучит он так: если запись натурального числа оканчивается чётной цифрой, то оно чётно (делится без остатка на 2), а если запись числа оканчивается нечётной цифрой, то это число нечётно.
Другими словами, если последняя цифра числа равна 2 , 4 , 6 , 8 или 0 - число делится на 2, если нет, то не делится
Например, числа: 234 , 8270 , 1276 , 9038 , 502 делятся на 2, потому что они чётные.
А числа: 235 , 137 , 2303
на 2 не делятся, потому что они нечетные.

Признак делимости на 3

У этого признака делимости совсем другие правила: если сумма цифр числа делится на 3, то и число делится на 3; если сумма цифр числа не делится на 3, то и число не делится на 3.
А значит, чтобы понять, делится ли число на 3, надо лишь сложить между собой цифры, из которых оно состоит.
Выглядит это так: 3987 и 141 делятся на 3, потому что в первом случае 3+9+8+7=27 (27:3=9 - делится без остака на 3), а во втором 1+4+1=6 (6:3=2 - тоже делится без остака на 3).
А вот числа: 235 и 566 на 3 не делятся, потому как 2+3+5=10 и 5+6+6=17 (а мы знаем, что ни 10 ни 17 не делятся на 3 без остатка).

Признак делимости на 4

Этот признак делимости будет посложнее. Если последние 2 цифры числа образуют число, делящееся на 4 или это 00, то и число делится на 4, в противном случае данное число не делится на 4 без остатка.
Например: 100 и 364 делятся на 4, потому что в первом случае число оканчивается на 00 , а во втором на 64 , которое в свою очередь делится на 4 без остатка (64:4=16)
Числа 357 и 886 не делятся на 4, потому что ни 57 ни 86 на 4 не делятся, а значит не соответствуют данному признаку делимости.

Признак делимости на 5

И опять перед нами довольно простой признак делимости: если запись натурального числа оканчивается цифрой 0 или 5, то это число делится без остатка на 5. Если же запись числа оканчивается иной цифрой, то число без остатка на 5 не делится.
Это значит, что любые числа, оканчивающиеся цифрами 0 и 5 , например 12355 и 430 , подпадают под правило и делятся на 5.
А, к примеру, 15493 и 564 не оканчиваются на цифру 5 или 0, а значит они не могут делиться на 5 без остатка.

Признак делимости на 6

Перед нами составное число 6, которое является произведением чисел 2 и 3. Поэтому признак делимости на 6 тоже является составным: для того, чтобы число делилось на 6, оно должно соответствовать двум признакам делимости одновременно: признаку делимости на 2 и признаку делимости на 3. При этом обратите внимание, что такое составное число как 4 имеет индивидуальный признак делимости, ведь оно является призведением числа 2 на само себя. Но вернемся к признаку делимости на 6.
Числа 138 и 474 чётные и отвечают признакам делимости на 3 (1+3+8=12, 12:3=4 и 4+7+4=15, 15:3=5), а значит они делятся на 6. Зато 123 и 447 хоть и делятся на 3 (1+2+3=6, 6:3=2 и 4+4+7=15, 15:3=5), но они нечётные, а значит не соответсвуют признаку делимости на 2, а следовательно и не соответсвуют признаку делимости на 6.

Признак делимости на 7

Этот признак делимости более сложный: число делится на 7, если результат вычитания удвоенной последней цифры из числа десятков этого числа делится на 7 или равен 0.
Звучит довольно запутанно, но на практике просто. Смотрите сами: число 95 9 делится на 7, потому что 95 -2*9=95-18=77, 77:7=11 (77 делится на 7 без остатка). Причем если с полученным во время преобразований числом возникли сложности (из-за его размера сложно понять, делится оно на 7 или нет, то данную процедуру можно продолжать столько раз, сколько Вы сочтете нужным).
Например, 45 5 и 4580 1 обладают признаками делимости на 7. В первом случае все довольно просто: 45 -2*5=45-10=35, 35:7=5. Во втором случае мы поступим так: 4580 -2*1=4580-2=4578. Нам сложно понять, делится ли 457 8 на 7, поэтому повторим процесс: 457 -2*8=457-16=441. И опять воспользуемся признаком делимости, так как перед нами пока еще трехзначное число 44 1. Итак, 44 -2*1=44-2=42, 42:7=6, т.е. 42 делится на 7 без остатка, а значит и 45801 делится на 7.
А вот числа 11 1 и 34 5 не делятся на 7, потому что 11 -2*1=11-2=9 (9 не делится без остатка на 7) и 34 -2*5=34-10=24 (24 не делится без остатка на 7).

Признак делимости на 8

Признак делимости на 8 звучит так: если последние 3 цифры образуют число, делящееся на 8, или это 000, то заданное число делится на 8.
Числа 1000 или 1088 делятся на 8: первое оканчивается на 000 , у второго 88 :8=11 (делится на 8 без остатка).
А вот числа 1100 или 4757 не делятся на 8,так как числа 100 и 757 не делятся без остатка на 8.

Признак делимости на 9

Этот признак делимости схож с признаком делимости на 3: если сумма цифр числа делится на 9, то и число делится на 9; если сумма цифр числа не делится на 9, то и число не делится на 9.
Например: 3987 и 144 делятся на 9, потому что в первом случае 3+9+8+7=27 (27:9=3 - делится без остака на 9), а во втором 1+4+4=9 (9:9=1 - тоже делится без остака на 9).
А вот числа: 235 и 141 на 9 не делятся, потому как 2+3+5=10 и 1+4+1=6 (а мы знаем, что ни 10 ни 6 не делятся на 9 без остатка).

Признаки делимости на 10, 100, 1000 и другие разрядные единицы

Данные признаки делимости я объединил потому, что их можно описать одинаково: число делится на разрядную единицу, если количество нулей на конце числа больше или равно количеству нулей у заданной разрядной единицы.
Другими словами, например, мы имеем такие числа: 6540 , 46400 , 867000 , 6450 . из них все делятся на 10 ; 46400 и 867000 делятся еще и на 100 ; и лишь одно из них - 867000 делится на 1000 .
Любые числа, у которых количество нулей на конце меньше чем у разрядной единицы, не делятся на эту разрядную единицу, например 60030 и 793 не делятся 100 .

Признак делимости на 11

Для того, чтобы выяснить, делится ли число на 11, надо получить разность сумм четных и нечетных цифр этого числа. Если данная разность равна 0 или делится на 11 без остатка, то и само число делится на 11 без остатка.
Чтобы было понятнее, предлагаю рассмотреть примеры: 2 35 4 делится на 11, потому что (2 +5 )-(3+4)=7-7=0. 29 19 4 тоже делится на 11, так как (9 +9 )-(2+1+4)=18-7=11.
А вот 11 1 или 4 35 4 не делятся на 11, так как в первом случае у нас получается (1+1)-1 =1, а во втором (4 +5 )-(3+4)=9-7=2.

Признак делимости на 12

Число 12 является составным. Его признаком делимости является соответствие признакам делимости на 3 и на 4 одновременно.
Например 300 и 636 соответствуют и признакам делимости на 4 (последние 2 цифры это нули или делятся на 4) и признакам делимости на 3 (сумма цифр и первого и втророго числа делятся на 3), а занчит, они делятся на 12 без остатка.
А вот 200 или 630 не делятся на 12, потому что в первом случае число отвечает лишь признаку делимости на 4, а во втором - лишь признаку делимости на 3. но не обоим признакам одновременно.

Признак делимости на 13

Признаком делимости на 13 является то, что если число десятков числа, сложенное с умноженными на 4 единицами этого числа, будет кратно 13 или равно 0, то и само число делится на 13.
Возьмем для примера 70 2. Итак, 70 +4*2=78, 78:13=6 (78 делится без остатка на 13), значит и 70 2 делится на 13 без остатка. Еще пример - число 114 4. 114 +4*4=130, 130:13=10. Число 130 делится на 13 без остатка, а значит заданное число соответсвует признаку делимости на 13.
Если же взять числа 12 5 или 21 2, то получаем 12 +4*5=32 и 21 +4*2=29 соответсвенно, и ни 32 ни 29 не делятся на 13 без остатка, а значит и заданные числа не делятся без остатка на 13.

Делимость чисел

Как видно из вышеперечисленного, можно предположить, что к любому из натуральных чисел можно подобрать свой индивидуальный признак делимости или же "составной" признак, если число кратно нескольким разным числам. Но как показывает практика, в основном чем больше число, тем сложнее его признак. Возможно, время,потраченное на проверку признака делимости, может оказаться равно или больше чем само деление. Поэтому мы и используем обычно простейшие из признаков делимости.

Серию статей о признаках делимости продолжает признак делимости на 3 . В этой статье сначала дана формулировка признака делимости на 3 , и приведены примеры применения этого признака при выяснении, какие из данных целых чисел делятся на 3 , а какие – нет. Дальше дано доказательство признака делимости на 3 . Также рассмотрены подходы к установлению делимости на 3 чисел, заданных как значение некоторого выражения.

Навигация по странице.

Признак делимости на 3, примеры

Начнем с формулировки признака делимости на 3 : целое число делится на 3 , если сумма его цифр делится на 3 , если же сумма цифр данного числа не делится на 3 , то и само число не делится на 3 .

Из приведенной формулировки понятно, что признаком делимости на 3 не удастся воспользоваться без умения выполнять сложение натуральных чисел. Также для успешного применения признака делимости на 3 нужно знать, что из всех однозначных натуральных чисел на 3 делятся числа 3 , 6 и 9 , а числа 1 , 2 , 4 , 5 , 7 и 8 – не делятся на 3 .

Теперь можно рассмотреть простейшие примеры применения признака делимости на 3 . Выясним, делится ли на 3 число?42 . Для этого вычисляем сумму цифр числа?42 , она равна 4+2=6 . Так как 6 делится на 3 , то в силу признака делимости на 3 можно утверждать, что и число?42 делится на 3 . А вот целое положительное число 71 на 3 не делится, так как сумма его цифр равна 7+1=8 , а 8 не делится на 3 .

А делится ли на 3 число 0 ? Чтобы ответить на этот вопрос, признак делимости на 3 не понадобится, здесь нужно вспомнить соответствующее свойство делимости, которое утверждает, что нуль делится на любое целое число. Таким образом, 0 делится на 3 .

В некоторых случаях чтобы показать, что данное число обладает или не обладает способностью делиться на 3 , к признаку делимости на 3 приходится обращаться несколько раз подряд. Приведем пример.

Покажите, что число 907 444 812 делится на 3 .

Сумма цифр числа 907 444 812 равна 9+0+7+4+4+4+8+1+2=39 . Чтобы выяснить, делится ли 39 на 3 , вычислим его сумму цифр: 3+9=12 . А чтобы узнать, делится ли 12 на 3 , находим сумму цифр числа 12 , имеем 1+2=3 . Так как мы получили число 3 , которое делится на 3 , то в силу признака делимости на 3 число 12 делится на 3 . Следовательно, 39 делится на 3 , так как сумма его цифр равна 12 , а 12 делится на 3 . Наконец, 907 333 812 делится на 3 , так как сумма его цифр равна 39 , а 39 делится на 3 .

Для закрепления материала разберем решение еще одного примера.

Делится ли на 3 число?543 205 ?

Вычислим сумму цифр данного числа: 5+4+3+2+0+5=19 . В свою очередь сумма цифр числа 19 равна 1+9=10 , а сумма цифр числа 10 равна 1+0=1 . Так как мы получили число 1 , которое не делится на 3 , из признака делимости на 3 следует, что 10 не делится на 3 . Поэтому 19 не делится на 3 , так как сумма его цифр равна 10 , а 10 не делится на 3 . Следовательно, исходное число?543 205 не делится на 3 , так как сумма его цифр, равная 19 , не делится на 3 .

Стоит заметить, что непосредственное деление данного числа на 3 также позволяет сделать вывод о том, делится ли данное число на 3 нацело, или нет. Этим мы хотим сказать, что не нужно пренебрегать делением в пользу признака делимости на 3 . В последнем примере, разделив столбиком 543 205 на 3 , мы бы убедились, что 543 205 не делится нацело на 3 , откуда можно было бы сказать, что и?543 205 не делится на 3 .

Доказательство признака делимости на 3

Доказать признак делимости на 3 нам поможет следующее представление числа a . Любое натуральное число a мы можем разложить по разрядам, после чего правило умножения на 10, 100, 1 000 и так далее позволяет получить представление вида a=a n ·10 n +a n?1 ·10 n?1 +…+a 2 ·10 2 +a 1 ·10+a 0 , где a n , a n?1 , …, a 0 – цифры, стоящие слева направо в записи числа a . Для наглядности приведем пример такого представления: 528=500+20+8=5·100+2·10+8 .

Теперь запишем ряд достаточно очевидных равенств: 10=9+1=3·3+1 , 100=99+1=33·3+1 , 1 000=999+1=333·3+1 и так далее.

Подставив в равенство a=a n ·10 n +a n?1 ·10 n?1 +…+a 2 ·10 2 +a 1 ·10+a 0 вместо 10 , 100 , 1 000 и так далее выражения 3·3+1 , 33·3+1 , 999+1=333·3+1 и так далее, получим
.

Свойства сложения натуральных чисел и свойства умножения натуральных чисел позволяют полученное равенство переписать так:

Выражение есть сумма цифр числа a . Обозначим ее для краткости и удобства буквой А, то есть, примем . Тогда получим представление числа a вида, которым и воспользуемся при доказательстве признака делимости на 3 .

Также для доказательства признака делимости на 3 нам потребуются следующие свойства делимости:

  • чтобы целое число a делилось на целое число b необходимо и достаточно, чтобы модуль числа a делился на модуль числа b ;
  • если в равенстве a=s+t все члены, кроме какого-то одного, делятся на некоторое целое число b , то и этот один член делится на b .

Теперь мы полностью подготовлены и можем провести доказательство признака делимости на 3 , для удобства этот признак сформулируем в виде необходимого и достаточного условия делимости на 3 .

Для делимости целого числа a на 3 необходимо и достаточно, чтобы сумма его цифр делилась на 3 .

Для a=0 теорема очевидна.

Если a отлично от нуля, то модуль числа a является натуральным числом, тогда возможно представление, где — сумма цифр числа a .

Так как сумма и произведение целых чисел есть целое число, то — целое число, тогда по определению делимости произведение делится на 3 при любых a 0 , a 1 , …, a n .

Если сумма цифр числа a делится на 3 , то есть, А делится на 3 , то в силу свойства делимости, указанного перед теоремой, делится на 3 , следовательно, a делится на 3 . Так доказана достаточность.

Если a делится на 3 , то и делится на 3 , тогда в силу того же свойства делимости число А делится на 3 , то есть, сумма цифр числа a делится на 3 . Так доказана необходимость.

Другие случаи делимости на 3

Иногда целые числа задаются не в явном виде, а как значение некоторого выражения с переменной при данном значении переменной. Например, значение выражения при некотором натуральном n является натуральным числом. Понятно, что при таком задании чисел для установления их делимости на 3 не поможет непосредственное деление на 3 , да и признак делимости на 3 удастся применить далеко не всегда. Сейчас мы рассмотрим несколько подходов к решению подобных задач.

Суть этих подходов заключается в представлении исходного выражения в виде произведения нескольких множителей, и если хотя бы один из множителей будет делиться на 3 , то в силу соответствующего свойства делимости можно будет сделать вывод о делимости на 3 всего произведения.

Иногда реализовать такой подход позволяет бином Ньютона. Рассмотрим решение примера.

Делится ли значение выражения на 3 при любом натуральном n ?

Очевидно равенство . Воспользуемся формулой бинома Ньютона:

В последнем выражении мы можем вынести 3 за скобки, при этом получим. Полученное произведение делится на 3 , так как содержит множитель 3 , а значение выражения в скобках при натуральных n представляет собой натуральное число. Следовательно, делится на 3 при любом натуральном n .

Во многих случаях доказать делимость на 3 позволяет метод математической индукции. Разберем его применение при решении примера.

Докажите, что при любом натуральном n значение выражения делится на 3 .

Для доказательства применим метод математической индукции.

При n=1 значение выражения равно , а 6 делится на 3 .

Предположим, что значение выражения делится на 3 при n=k , то есть, делится на 3 .

Учитывая, что делится на 3 , покажем, что значение выражения при n=k+1 делится на 3 , то есть, покажем, что делится на 3 .

Проведем некоторые преобразования:

Выражение делится на 3 и выражение делится на 3 , поэтому их сумма делится на 3 .

Так методом математической индукции доказана делимость на 3 при любом натуральном n .

Покажем еще один подход к доказательству делимости на 3 . Если показать, что при n=3·m , n=3·m+1 и n=3·m+2 , где m – произвольное целое число, значение некоторого выражения (с переменной n) делится на 3 , то это будет доказывать делимость выражения на 3 при любом целом n . Рассмотрим этот подход при решении предыдущего примера.

Покажите, что делится на 3 при любом натуральном n .

При n=3·m имеем. Полученное произведение делится на 3 , так как содержит множитель 3 , делящийся на 3 .

Полученное произведение тоже делится на 3 .

И это произведение делится на 3 .

Следовательно, делится на 3 при любом натуральном n .

В заключение приведем решение еще одного примера.

Делится ли на 3 значение выражения при некотором натуральном n .

При n=1 имеем. Сумма цифр полученного числа равна 3 , поэтому признак делимости на 3 позволяет утверждать, что это число делится на 3 .

При n=2 имеем. Сумма цифр и этого числа равна 3 , поэтому оно делится на 3 .

Понятно, что при любом другом натуральном n мы будем иметь числа, сумма цифр которых равна 3 , следовательно, эти числа делятся на 3 .

Таким образом, при любом натуральном n делится на 3 .

www.cleverstudents.ru

Математика, 6 класс, учебник для учащихся общеобразовательных организаций, Зубарева И.И., Мордкович А.Г., 2014

Математика, 6 класс, учебник для учащихся общеобразовательных организаций, Зубарева И.И., Мордкович А.Г., 2014.

Теоретический материал в учебнике изложен таким образом, чтобы преподаватель смог применять проблемный подход в обучении. С помощью системы обозначений выделяются упражнения четырёх уровней сложности. В каждом параграфе сформулированы контрольные задания исходя из того, что должны знать и уметь учащиеся для достижения ими уровня стандарта математического образования. В конце учебника даны домашние контрольные работы и ответы. Цветные иллюстрации (рисунки и схемы) обеспечивают высокий уровень наглядности учебного материала.
Соответствует требованиям ФГОС ООО.

Задачи.

4. Начертите треугольник ABC и отметьте точку О вне его (как на рисунке 11). Постройте фигуру, симметричную треугольнику ABC относительно точки О.

5. Начертите треугольник KMN и постройте фигуру, симметричную этому треугольнику относительно:
а) его вершины - точки М;
б) точки О - середины стороны MN.

6. Постройте фигуру, симметричную:
а) лучу ОМ относительно точки О; запишите, какая точка симметрична точке О;
б) лучу ОМ относительно произвольной точки А, не принадлежащей этому лучу;
в) прямой АВ относительно точки О, не принадлежащей этой прямой;
г) прямой АВ относительно точки О, принадлежащей этой прямой; запишите, какая точка симметрична точке О.
В каждом случае охарактеризуйте взаимное расположение центрально-симметричных фигур.

Оглавление
Глава I. Положительные и отрицательные числа. Координаты
§ 1. Поворот и центральная симметрия
§ 2. Положительные и отрицательные числа. Координатная прямая
§ 3. Модуль числа. Противоположные числа
§ 4. Сравнение чисел
§ 5. Параллельность прямых
§ 6. Числовые выражения, содержащие знаки « + », «-»
§ 7. Алгебраическая сумма и её свойства
§ 8. Правило вычисления значения алгебраической суммы двух чисел
§ 9. Расстояние между точками координатной прямой
§ 10. Осевая симметрия
§ 11. Числовые промежутки
§ 12. Умножение и деление положительных и отрицательных чисел
§ 13. Координаты
§ 14. Координатная плоскость
§ 15. Умножение и деление обыкновенных дробей
§ 16. Правило умножения для комбинаторных задач
Глава II. Преобразование буквенных выражений
§ 17. Раскрытие скобок
§ 18. Упрощение выражений
§ 19. Решение уравнений
§ 20. Решение задач на составление уравнений
§ 21. Две основные задачи на дроби
§ 22. Окружность. Длина окружности
§ 23. Круг. Площадь круга
§ 24. Шар. Сфера
Глава III. Делимость натуральных чисел
§ 25. Делители и кратные
§ 26. Делимость произведения
§ 27. Делимость суммы и разности чисел
§ 28. Признаки делимости на 2, 5, 10, 4 и 25
§ 29. Признаки делимости на 3 и 9
§ 30. Простые числа. Разложение числа на простые множители
§ 31. Наибольший общий делитель
§ 32. Взаимно простые числа. Признак делимости на произведение. Наименьшее общее кратное
Глава IV. Математика вокруг нас
§ 33. Отношение двух чисел
§ 34. Диаграммы
§ 35. Пропорциональность величин
§ 36. Решение задач с помощью пропорций
§ 37. Разные задачи
§ 38. Первое знакомство с понятием «вероятность»
§ 39. Первое знакомство с подсчётом вероятности
Домашние контрольные работы
Темы для проектной деятельности
Ответы

Бесплатно скачать электронную книгу в удобном формате и читать:

Математика


СПРАВОЧНЫЙ МАТЕРИАЛ ПО МАТЕМАТИКЕ ДЛЯ 1-6 КЛАССОВ.

Уважаемые родители! Если Вы ищите репетитора по математике для Вашего ребёнка, то это объявление для Вас. Предлагаю скайп-репетиторство: подготовка к ОГЭ, ЕГЭ, ликвидация пробелов в знаниях. Ваши выгоды очевидны:

1) Ваш ребенок находится дома, и Вы можете быть за него спокойны;

2) Занятия проходят в удобное для ребенка время, и Вы даже можете присутствовать на этих занятиях. Объясняю я просто и доступно на всем привычной школьной доске.

3) Другие важные преимущества скайп-занятий додумаете сами!

Напишите мне по адресу: или сразу добавляйтесь ко мне в скайп, и мы обо всём договоримся. Цены доступные.

P.S. Возможны занятия в группах по 2-4 учащихся.

С уважением Татьяна Яковлевна Андрющенко - автор этого сайта.

Дорогие друзья!

Я рада предложить вам скачать бесплатно справочные материалы по математике для 5 класса. Скачать здесь!

Дорогие друзья!

Не секрет, что некоторые дети испытывают трудности при умножении и делении в столбик. Чаще всего это связано с недостаточным знанием таблицы умножения. Предлагаю подучить таблицу умножения с помощью лото. Подробнее смотрите здесь. Скачать лото здесь.

Дорогие друзья! Скоро вы столкнетесь (или уже столкнулись) с необходимостью решать задачи на проценты . Такие задачи начинают решать в 5 классе и заканчивают. а вот и не заканчивают решать задачи на проценты! Эти задачи встречаются и на контрольных, и на экзаменах: как переводных, так и ОГЭ и ЕГЭ. Что же делать? Нужно учиться решать такие задачи. В этом вам поможет моя книга «Как решать задачи на проценты». Подробности здесь!

Сложение чисел.

  • a+b=c , где a и b–слагаемые, c–сумма.
  • Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.

Вычитание чисел.

  • a-b=c , где a–уменьшаемое, b–вычитаемое, c-разность.
  • Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое.
  • Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.

Умножение чисел.

  • a·b=c , где a и b-сомножители, c-произведение.
  • Чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель.

Деление чисел.

  • a:b=c , где a-делимое, b-делитель, c-частное.
  • Чтобы найти неизвестное делимое, нужно делитель умножить на частное.
  • Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Законы сложения.

  • a+b=b+a (переместительный: от перестановки слагаемых сумма не меняется).
  • (a+b)+c=a+(b+c) (сочетательный: чтобы к сумме двух слагаемых прибавить третье число, можно к первому числу прибавить сумму второго и третьего).

Таблица сложения.

  • 1+9=10; 2+8=10; 3+7=10; 4+6=10; 5+5=10; 6+4=10; 7+3=10; 8+2=10; 9+1=10.
  • 1+19=20; 2+18=20; 3+17=20; 4+16=20; 5+15=20; 6+14=20; 7+13=20; 8+12=20; 9+11=20; 10+10=20; 11+9=20; 12+8=20; 13+7=20; 14+6=20; 15+5=20; 16+4=20; 17+3=20; 18+2=20; 19+1=20.

Законы умножения.

  • a·b=b·a (переместительный: от перестановки множителей произведение не меняется).
  • (a·b)·c=a·(b·c) (сочетательный: чтобы произведение двух чисел умножить на третье число, можно первое число умножить на произведение второго и третьего).
  • (a+b)·c=a·c+b·c (распределительный закон умножения относительно сложения: чтобы сумму двух чисел умножить на третье число, можно каждое слагаемое умножить на это число и полученные результаты сложить).
  • (а-b)·c=a·с-b·c (распределительный закон умножения относительно вычитания: чтобы разность двух чисел умножить на третье число, можно умножить на это число уменьшаемое и вычитаемое отдельно и из первого результата вычесть второй).

Таблица умножения .

2·1=2; 3·1=3; 4·1=4; 5·1=5; 6·1=6; 7·1=7; 8·1=8; 9·1=9.

2·2=4; 3·2=6; 4·2=8; 5·2=10; 6·2=12; 7·2=14; 8·2=16; 9·2=18.

2·3=6; 3·3=9; 4·3=12; 5·3=15; 6·3=18; 7·3=21; 8·3=24; 9·3=27.

2·4=8; 3·4=12; 4·4=16; 5·4=20; 6·4=24; 7·4=28; 8·4=32; 9·4=36.

2·5=10; 3·5=15; 4·5=20; 5·5=25; 6·5=30; 7·5=35; 8·5=40; 9·5=45.

2·6=12; 3·6=18; 4·6=24; 5·6=30; 6·6=36; 7·6=42; 8·6=48; 9·6=54.

2·7=14; 3·7=21; 4·7=28; 5·7=35; 6·7=42; 7·7=49; 8·7=56; 9·7=63.

2·8=16; 3·8=24; 4·8=32; 5·8=40; 6·8=48; 7·8=56; 8·8=64; 9·8=72.

2·9=18; 3·9=27; 4·9=36; 5·9=45; 6·9=54; 7·9=63; 8·9=72; 9·9=81.

2·10=20; 3·10=30; 4·10=40; 5·10=50; 6·10=60; 7·10=70; 8·10=80; 9·10=90.

Делители и кратные.

  • Делителем натурального числа а называют натуральное число, на которое а делится без остатка. (Числа 1, 2, 3, 4, 6, 8, 12, 24-делители числа 24, т. к. 24 делится на каждое из них без остатка) 1-делитель любого натурального числа. Наибольший делитель любого числа – само это число.
  • Кратным натурального числа b называют натуральное число, которое делится без остатка на b . (Числа 24, 48, 72,…-кратны числу 24, так как делятся на 24 без остатка). Наименьшее кратное любого числа - само это число.

Признаки делимости натуральных чисел.

  • Числа, употребляемые при счете предметов (1, 2, 3, 4,…) называют натуральными числами. Множество натуральных чисел обозначают буквой N .
  • Цифры 0, 2, 4, 6, 8 называют четными цифрами. Числа, запись которых оканчивается четными цифрами, называют четными числами.
  • Цифры 1, 3, 5, 7, 9 называют нечетными цифрами. Числа, запись которых оканчивается нечетными цифрами, называются нечетными числами.
  • Признак делимости на число 2 . Все натуральные числа, запись которых оканчивается четной цифрой, делятся на 2.
  • Признак делимости на число 5 . Все натуральные числа, запись которых оканчивается цифрой 0 или цифрой 5, делятся на 5.
  • Признак делимости на число 10 . Все натуральные числа, запись которых оканчивается цифрой 0, делятся на 10.
  • Признак делимости на число 3 . Если сумма цифр числа делится на 3, то и само число делится на 3.
  • Признак делимости на число 9 . Если сумма цифр числа делится на 9, то и само число делится на 9.
  • Признак делимости на число 4 . Если число, составленное из двух последних цифр данного числа, делится на 4, то и само данное число делится на 4.
  • Признак делимости на число 11. Если разность между суммой цифр, стоящих на нечетных местах, и суммой цифр, стоящих на четных местах, делится на 11, то и само число делится на 11.
  • Простым называют число, которое имеет только два делителя: единицу и само это число.
  • Составным называют число, которое имеет более двух делителей.
  • Число 1 не относится ни к простым числам, ни к составным числам.
  • Запись составного числа в виде произведения только простых чисел называется разложением составного числа на простые множители. Любое составное число можно единственным образом представить в виде произведения простых множителей.
  • Наибольшим общим делителем данных натуральных чисел называют наибольшее натуральное число, на которое делится каждое из этих чисел.
  • Наибольший общий делитель данных чисел равен произведению общих простых множителей в разложениях этих чисел. Пример. НОД(24, 42)=2·3=6, т. к. 24=2·2·2·3, 42=2·3·7, их общие простые множители 2 и 3.
  • Если натуральные числа имеют только один общий делитель-единицу, то эти числа называют взаимно простыми.
  • Наименьшим общим кратным данных натуральных чисел называют наименьшее натуральное число, кратное каждому из данных чисел. Пример. НОК(24, 42)=168. Это самое маленькое число, которое делится и на 24 и на 42.
  • Для нахождения НОК нескольких данных натуральных чисел надо: 1) разложить каждое из данных чисел на простые множители; 2) выписать разложение большего из чисел и умножить его на недостающие множители из разложений других чисел.
  • Наименьшее кратное двух взаимно простых чисел равно произведению этих чисел.

b -знаменатель дроби, показывает, на сколько равных частей разделили;

a -числитель дроби, показывает, сколько таких частей взяли. Дробная черта означает знак деления.

Иногда вместо горизонтальной дробной черты ставят наклонную, и обыкновенная дробь записывается так: a/b .

  • У правильной дроби числитель меньше знаменателя.
  • У неправильной дроби числитель больше знаменателя или равен знаменателю.

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Деление и числителя и знаменателя дроби на их общий делитель, отличный от единицы, называют сокращением дроби.

  • Число, состоящее из целой части и дробной части, называется смешанным числом.
  • Чтобы неправильную дробь представить в виде смешанного числа, надо разделить числитель дроби на знаменатель, тогда неполное частное будет целой частью смешанного числа, остаток – числителем дробной части, а знаменатель останется тот же.
  • Чтобы представить смешанное число в виде неправильной дроби, нужно умножить целую часть смешанного числа на знаменатель, к полученному результату прибавить числитель дробной части и записать в числителе неправильной дроби, а знаменатель оставить тот же.
  • Луч Ох с началом отсчета в точке О , на котором указаны единичный отрезо к и направление , называют координатным лучом .
  • Число, соответствующее точке координатного луча, называется координатой этой точки. Например, А(3) . Читают: точка А с координатой 3.
  • Наименьшим общим знаменателем (НОЗ ) данных несократимых дробей является наименьшее общее кратное (НОК ) знаменателей этих дробей.
  • Чтобы привести дроби к наименьшему общему знаменателю, надо: 1) найти наименьшее общее кратное знаменателей данных дробей, оно и будет наименьшим общим знаменателем. 2) найти для каждой из дробей дополнительный множитель, для чего делить новый знаменатель на знаменатель каждой дроби. 3) умножить числитель и знаменатель каждой дроби на ее дополнительный множитель.
  • Из двух дробей с одинаковыми знаменателями больше та, у которой числитель больше, и меньше та, у которой числитель меньше.
  • Из двух дробей с одинаковыми числителями больше та, у которой знаменатель меньше, и меньше та, у которой знаменатель больше.
  • Чтобы сравнить дроби с разными числителями и разными знаменателями, надо привести дроби к наименьшему общему знаменателю, а затем сравнивать дроби с одинаковыми знаменателями.

Действия над обыкновенными дробями.

  • Чтобы сложить дроби с одинаковыми знаменателями, нужно сложить их числители, а знаменатель оставить тот же.
  • Если нужно сложить дроби с разными знаменателями, то сначала дроби приводят к наименьшему общему знаменателю, а затем складывают дроби с одинаковыми знаменателями.
  • Чтобы выполнить вычитание дробей с одинаковыми знаменателями, из числителя первой дроби вычитают числитель второй дроби, а знаменатель оставляют тот же.
  • Если нужно выполнить вычитание дробей с разными знаменателями, то их сначала приводят к общему знаменателю, а затем выполняют вычитание дробей с одинаковыми знаменателями.
  • При выполнении действий сложения или вычитания смешанных чисел эти действия выполняют отдельно для целых частей и для дробных частей, а затем результат записывают в виде смешанного числа.
  • Произведение двух обыкновенных дробей равно дроби, числитель которой равен произведению числителей, а знаменатель - произведению знаменателей данных дробей.
  • Чтобы умножить обыкновенную дробь на натуральное число, нужно умножить числитель дроби на это число, а знаменатель оставить тот же.
  • Два числа, произведение которых равно единице, называют взаимно обратными числами.
  • При умножении смешанных чисел их сначала обращают в неправильные дроби.
  • Чтобы найти дробь от числа, нужно умножить число на эту дробь.
  • Чтобы разделить обыкновенную дробь на обыкновенную дробь, нужно делимое умножить на число, обратное делителю.
  • При делении смешанных чисел их сначала обращают в неправильные дроби.
  • Чтобы разделить обыкновенную дробь на натуральное число, нужно знаменатель дроби умножить на это натуральное число, а числитель оставить тот же. ((2/7):5=2/(7·5)=2/35).
  • Чтобы найти число по его дроби, нужно разделить на эту дробь число, ей соответствующее.
  • Десятичной дробью называют число, записанное в десятичной системе и имеющее разряды меньше единицы. (3,25; 0,1457 и т. д.)
  • Знаки, стоящие в десятичной дроби после запятой, называют десятичными знаками.
  • Десятичная дробь не изменится, если в конце десятичной дроби приписать или отбросить нули.

Чтобы сложить десятичные дроби, нужно: 1) уравнять в этих дробях количество десятичных знаков; 2) записать их друг под другом так, чтобы запятая была записана под запятой; 3) выполнить сложение, не обращая внимания на запятую, и поставить в сумме запятую под запятыми в слагаемых дробях.

Чтобы выполнить вычитание десятичных дробей, нужно: 1) уравнять количество десятичных знаков в уменьшаемом и вычитаемом; 2) подписать вычитаемое под уменьшаемым так, чтобы запятая оказалась под запятой; 3) выполнить вычитание, не обращая внимания на запятую, и в полученном результате поставить запятую под запятыми уменьшаемого и вычитаемого.

  • Чтобы умножить десятичную дробь на натуральное число, нужно умножить ее на это число, не обращая внимания на запятую, и в полученном произведении отделить запятой столько цифр справа, сколько их было после запятой в данной дроби.
  • Чтобы умножить одну десятичную дробь на другую, нужно выполнить умножение, не обращая внимания на запятые, и в полученном результате отделить запятой справа столько цифр, сколько их было после запятых в обоих множителях вместе.
  • Чтобы умножить десятичную дробь на 10, 100, 1000 и т. д. нужно перенести запятую вправо на 1, 2, 3 и т. д. цифр.
  • Чтобы умножить десятичную дробь на 0,1; 0,01; 0,001 и т. д. нужно перенести запятую влево на 1, 2, 3 и т. д. цифр.
  • Чтобы разделить десятичную дробь на натуральное число, нужно делить дробь на это число, как делят натуральные числа и поставить в частном запятую тогда, когда закончится деление целой части.
  • Чтобы разделить десятичную дробь на 10, 100, 1000 и т. д. нужно перенести запятую влево на 1, 2, 3 и т. д. цифр.
  • Чтобы разделить число на десятичную дробь, нужно перенести запятые в делимом и делителе на столько цифр вправо, сколько их стоит после запятой в делителе, а затем выполнить деление на натуральное число.
  • Чтобы разделить десятичную дробь на 0,1; 0,01; 0,001 и т. д., нужно перенести запятую вправо на 1, 2, 3 и т. д. цифр. (Деление десятичной дроби на 0,1; 0,01; 0,001 и т. д. равносильно умножению этой десятичной дроби на 10, 100, 1000 и т.д.)

Чтобы округлить число до какого-либо разряда – подчеркнем цифру этого разряда, а затем все цифры, стоящие за подчеркнутой, заменяем нулями, а если они стоят после запятой – отбрасываем. Если первая замененная нулем или отброшенная цифра равна 0, 1, 2, 3 или 4, то подчеркнутую цифру оставляем без изменения. Если первая замененная нулем или отброшенная цифра равна 5, 6, 7, 8 или 9, то подчеркнутую цифру увеличиваем на 1.

Среднее арифметическое нескольких чисел.

Средним арифметическим нескольких чисел называют частное от деления суммы этих чисел на число слагаемых.

Размах ряда чисел.

Разность между наибольшим и наименьшим значениями ряда данных называется размахом ряда чисел.

Мода ряда чисел .

Число, встречающееся с наибольшей частотой среди данных чисел ряда, называется модой ряда чисел.

  • Процентом называется одна сотая часть. Приобрести книгу, которая учит, «Как решать задачи на проценты».
  • Чтобы выразить проценты дробью или натуральным числом, нужно число процентов разделить на 100%. (4%=0,04; 32%=0,32).
  • Чтобы выразить число в процентах, нужно его умножить на 100%. (0,65=0,65·100%=65%; 1,5=1,5·100%=150%).
  • Чтобы найти проценты от числа, нужно выразить проценты обыкновенной или десятичной дробью и умножить полученную дробь на данное число.
  • Чтобы найти число по его процентам, нужно выразить проценты обыкновенной или десятичной дробью и разделить на эту дробь данное число.
  • Чтобы найти, сколько процентов составляет первое число от второго, нужно разделить первое число на второе и результат умножить на 100%.
  • Частное двух чисел называют отношением этих чисел. a:b или a/b – отношение чисел a и b, причем, а – предыдущий член, b – последующий член.
  • Если члены данного отношения переставить местами, то получившееся отношение называют обратным для данного отношения. Отношения b/a и a/b – взаимно обратные.
  • Отношение не изменится, если оба члена отношения умножить или разделить на одно и то же число, отличное от нуля.
  • Равенство двух отношений называют пропорцией.
  • a:b=c:d . Это пропорция. Читают: а так относится к b , как c относится к d . Числа a и d называют крайними членами пропорции, а числа b и c – средними членами пропорции.
  • Произведение крайних членов пропорции равно произведению ее средних членов. Для пропорции a:b=c:d или a/b=c/d основное свойство записывается так: a·d=b·c.
  • Чтобы найти неизвестный крайний член пропорции, нужно произведение средних членов пропорции разделить на известный крайний член.
  • Чтобы найти неизвестный средний член пропорции, нужно произведение крайних членов пропорции разделить на известный средний член. Задачи на пропорцию.

Пусть величина y зависит от величины х . Если при увеличении х в несколько раз величина у увеличивается во столько же раз, то такие величины х и у называются прямо пропорциональными.

Если две величины прямо пропорциональны, то отношение двух произвольно взятых значений первой величины равно отношению двух соответствующих значений второй величины.

Отношение длины отрезка на карте к длине соответствующего расстояния на местности называют масштабом карты.

Пусть величина у зависит от величины х . Если при увеличении х в несколько раз величина у уменьшается во столько же раз, то такие величины х и у называются обратно пропорциональными.

Если две величины находятся в обратно пропорциональной зависимости, то отношение двух произвольно взятых значений одной величины равно обратному отношению соответствующих значений другой величины.

  • Множество представляет собой совокупность некоторых предметов или чисел, составленных по каким-либо общим свойствам или законам (множество букв на странице, множество правильных дробей со знаменателем 5, множество звезд на небе и т.д.).
  • Множества состоят из элементов и бывают конечными или бесконечными. Множество, которое не содержит ни одного элемента, называют пустым множеством и обозначают O.
  • Множество В называют подмножеством множества А , если все элементы множества В являются элементами множества А.
  • Пересечением множеств А и В называется множество, элементы которого принадлежат и множеству А и множеству В .
  • Объединением множеств А и В называется множество, элементы которого принадлежат хотя бы одному из данных множеств А и В .

Множества чисел.

  • N – множество натуральных чисел: 1, 2, 3, 4,…
  • Z – множество целых чисел: …, -4, -3, -2, -1, 0, 1, 2, 3, 4,…
  • Q – множество рациональных чисел, представимых в виде дроби m/n , где m – целое, n – натуральное (-2; 3/5; v9; v25 и т.д.)
  • Координатной прямой называют прямую, на которой заданы положительное направление, начало отсчета (точка О) и единичный отрезок.
  • Каждой точке на координатной прямой соответствует некоторое число, которое называют координатой этой точки. Например, А(5 ). Читают: точка А с координатой пять. В(-3) . Читают: точка В с координатой минус три.
  • Модулем числа а (записывают |a| ) называют расстояние от начала отсчета до точки, соответствующей данному числу а . Значение модуля любого числа неотрицательно. |3|=3; |-3|=3, т.к. расстояние от начала отсчета и до числа -3 и до числа 3 равно трем единичным отрезкам. |0|=0 .
  • По определению модуля числа: |a|=a , если a?0 и |a|=-a , если а b .
  • Если при сравнении чисел a и b разность a-b – отрицательное число, то a , то их называют строгими неравенствами.
  • Если неравенства записывают знаками? или?, то их называют нестрогими неравенствами.

Свойства числовых неравенств.

г) Неравенство вида x?a. Ответ:

  • Основные идеи и понятия, необходимые для организации волонтерской (добровольческой) деятельности. 1.Общие подходы к организации волонтерской (добровольческой) деятельности. 1.1.Основные идеи и понятия, необходимые для организации волонтерской (добровольческой) деятельности. 1.2. Законодательные основы волонтерской […]
  • Закон муна Законы Ману - древнеиндийский сборник предписаний религиозного, морально-нравственного и общественного долга (дхармы), называемый также "закон ариев" или "кодекс чести ариев". Манавадхармашастра - одна из двадцати дхармашастр. Здесь представлены избранные фрагменты (перевод Георгия Федоровича […]
  • «Управление и Оптимизация Производственного Предприятия» АННОТАЦИЯ Даны основные понятия делового этикета. Показано, что в настоящее время, когда отечественные предприятия и организации интегрируются в экономическую жизнь различных регионов планеты, особого внимания требуют правила делового общения. Приводятся тесты […]
  • Текст работы размещён без изображений и формул.
    Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

    Введение

    На уроках математики при изучении темы «Признаки делимости», где мы познакомились с признаками делимости на 2; 5; 3; 9; 10, меня заинтересовало, а есть ли признаки делимости на другие числа, и существует ли универсальный метод делимости на любое натуральное число. Поэтому я занялся исследовательской работой на данную тему.

    Цель исследования: изучение признаков делимости натуральных чисел до 100, дополнение уже известных признаков делимости натуральных чисел нацело, изучаемых в школе.

    Для достижения цели были поставлены задачи:

      Собрать, изучить и систематизировать материал о признаках делимости натуральных чисел, воспользовавшись различными источниками информации.

      Найти универсальный признак делимости на любое натуральное число.

      Научиться пользоваться признаком делимости Паскаля для определения делимости чисел, а также попытаться сформулировать признаки делимости на любое натуральное число.

    Объект исследования: делимость натуральных чисел.

    Предмет исследования: признаки делимости натуральных чисел.

    Методы исследования: сбор информации; работа с печатными материалами; анализ; синтез; аналогия; опрос; анкетирование; систематизация и обобщение материала.

    Гипотеза исследования: Если можно определить делимость натуральных чисел на 2, 3, 5, 9, 10, то должны быть признаки, по которым можно определить делимость натуральных чисел на другие числа.

    Новизна проведённой исследовательской работы заключается в том, что данная работа систематизирует знания о признаках делимости и универсальном методе делимости натуральных чисел.

    Практическая значимость : материал данной исследовательской работы можно использовать в 6 - 8 классах на факультативных занятиях при изучении темы «Делимость чисел».

    Глава I. Определение и свойства делимости чисел

    1.1.Определения понятий делимости и признаков делимости, свойства делимости.

    Теория чисел - раздел математики, в котором изучаются свойства чисел. Основной объект теории чисел - натуральные числа. Главное их свойство, которое рассматривает теория чисел, это делимость. Определение: Целое число a делится на целое число b, не равное нулю, если существует такое целое число k, что a = bk (например, 56 делится на 8, т.к. 56 = 8х7). Признак делимости — правило, позволяющее установить, делится ли данное натуральное число на некоторые другие числа нацело, т.е. без остатка.

    Свойства делимости:

      Всякое число a, отличное от нуля, делится само на себя.

      Нуль делится на любое b, не равное нулю.

      Если a делится на b (b0) и b делится на c (c0), то a делится на c.

      Если a делится на b (b0) и b делится на a (a0), то числа a и b либо равны, либо являются противоположными числами.

    1.2. Свойства делимости суммы и произведения:

      Если в сумме целых чисел каждое слагаемое делится на некоторое число, то сумма делится на это число.

    2) Если в разности целых чисел уменьшаемое и вычитаемое делится на некоторое число, то и разность делится на некоторое число.

    3) Если в сумме целых чисел все слагаемые, кроме одного делятся, на некоторое число, то сумма не делится на это число.

    4) Если в произведении целых чисел один из множителей делится на некоторое число, то и произведение делится на это число.

    5) Если в произведении целых чисел один из множителей делится на m, а другой на n, то произведение делится на mn.

    Кроме этого, изучая признаки делимости чисел, я познакомился с понятием «цифровой кореньчисла» . Возьмём натуральное число. Найдём сумму его цифр. У результата также найдём сумму цифр, и так до тех пор, пока не получится однозначное число. Полученный результат называется цифровым корнем числа. К примеру, цифровой корень числа 654321 равен 3: 6+5+4+3+2+1=21,2+1=3. А теперь можно задуматься над вопросом: «А какие существуют признаки делимости и есть ли универсальный признак делимости одного числа на другое?»

    Глава II. Признаки делимости натуральных чисел.

    2.1. Признаки делимости на 2,3,5,9,10.

    Среди признаков делимости самые удобные и известные из школьного курса математики 6 класса:

      Делимость на 2. Если запись натурального числа оканчивается чётной цифрой или нулём, то число делится на 2.Число 52738 делится на 2, так как последняя цифра 8- четная.

      Делимость на 3 . Если сумма цифр числа делится на 3, то и число делится на 3 (число 567 делится на 3, т.к. 5+6+7 = 18, а 18 делится на 3.)

      Делимость на 5. Если запись натурального числа оканчивается цифрой 5 или нулём, то число делится на 5 (число 130 и 275 делятся на 5, т.к. последними цифрами чисел являются 0 и 5, но число 302 не делится на 5, т.к. последней цифрой числа не являются 0 и 5).

      Делимость на 9. Если сумма цифр делится на 9, то и число делится на 9 (676332 делится на 9 т.к. 6+7+6+3+3+2=27, а 27 делится на 9).

      Делимость на 10 . Если запись натурального числа оканчивается цифрой 0, то это число делится на 10 (230 делится на 10, т.к. последняя цифра числа 0).

    2.2.Признаки делимости на 4,6,8,11,12,13 и т.д.

    Поработав с различными источниками, я узнал другие признаки делимости. Опишу некоторые из них.

      Деление на 6 . Нужно проверить делимость интересующего нас числа на 2 и на 3. Число делится на 6 в том и только в том случае, если оно чётное, а его цифровой корень делится на 3. (Например,678 делится на 6, так как оно четное и 6+7+8=21, 2+1=3) Другой признак делимости: число делится на 6 тогда и только тогда, когда учетверённое число десятков, сложенное с числом единиц делится на 6. (73,7*4+3=31,31 не делится на 6, значит и 7 не делится на 6.)

      Деление на 8. Число делится на 8 в том и только в том случае, если его последние три цифры образуют число, делящееся на 8. (12 224 делится на 8 т.к. 224:8=28). Трёхзначное число делится на 8 тогда и только тогда, когда число единиц, сложенное с удвоенным числом десятков и учетверённым числом сотен, делится на 8. Например, 952 делится на 8 так как на 8 делится 9*4 + 5 *2 + 2 = 48.

      Деление на 4 и на 25. Если две последние цифры нули или выражают число, делящееся на 4 или (и) на 25, то число делится на 4 или (и) на 25 (число 1500 делится на 4 и 25, т. к. оно оканчивается двумя нулями, число 348 делится на 4, поскольку 48 делится на 4, но это число не делится на 25, т.к. 48 не делится на 25, число 675 делится на 25, т.к. 75 делится на 25, но не делится на 4, т.к. 75 не делится на 4).

    Зная основные признаки делимости на простые числа, можно вывести признаки делимости на составные числа:

    Признак делимости на 11 . Если разность между суммой цифр, стоящих на чётных местах и суммой цифр, стоящих на нечётных местах делится на 11, то и число делится на 11 (число 593868 делится на 11, т.к. 9 + 8 + 8 = 25, а 5 + 3 + 6 = 14, их разность равна 11, а 11 делится на 11).

    Признак делимости на 12: число делится на 12 тогда и только тогда, когда две последние цифры делятся на 4 и сумма цифр делится на 3.

    т.к. 12= 4 ∙ 3, т.е. число должно делиться на 4 и на 3.

    Признак делимости на 13: Число делится на 13 тогда и только тогда, когда на 13 делится знакопеременная сумма чисел, образованных последовательными тройками цифр данного числа. Как узнать, например, что число 354862625 делится на 13? 625-862+354=117 делится на 13, 117:13=9, значит, и число 354862625 делится на 13.

    Признак делимости на 14: число делится на 14 тогда и только тогда, когда оно заканчивается на чётную цифру и когда результат вычитания удвоенной последней цифры из этого числа без последней цифры делится на 7.

    т.к. 14= 2 ∙ 7, т.е. число должно делиться на 2 и на 7.

    Признак делимости на 15: число делится на 15 тогда и только тогда, когда оно заканчивается на 5 и на 0 и сумма цифр делится на 3.

    т.к. 15= 3 ∙ 5, т.е. число должно делиться на 3 и на 5.

    Признак делимости на 18: число делится на 18 тогда и только тогда, когда оно заканчивается на чётную цифру и сумма его цифр делится на 9.

    т.к18= 2 ∙ 9, т.е. число должно делиться на 2 и на 9.

    Признак делимости на 20: число делится на 20 тогда и только тогда, когда число заканчивается на 0 и предпоследняя цифра четная.

    т.к. 20 = 10 ∙ 2 т.е. число должно делиться на 2 и на 10.

    Признак делимости на 25: число, содержащее не менее трех цифр, делится на 25 тогда и только тогда, когда делится на 25 число, образованное двумя последними цифрами.

    Признак делимости на 30 .

    Признак делимости на 59 . Число делится на 59 тогда и только тогда, когда число десятков, сложенное с числом единиц, умноженное на 6, делится на 59. Например, 767 делится на 59, так как на 59 делятся 76 + 6*7 = 118 и 11 + 6*8 = 59.

    Признак делимости на 79 . Число делится на 79 тогда и только тогда, когда число десятков, сложенное с числом единиц, умноженное на 8, делится на 79. Например, 711 делится на 79, так как на 79 делятся 71 + 8*1 = 79.

    Признак делимости на 99. Число делится на 99 тогда и только тогда, когда на 99 делится сумма чисел, образующих группы по две цифры (начиная с единиц). Например, 12573 делится на 99, так как на 99 делится 1 + 25 + 73 = 99.

    Признак делимости на 100 . На 100 делятся только те числа, у которых две последние цифры нули.

    Признак делимости на 125: число, содержащее не менее четырех цифр, делится на 125 тогда и только тогда, когда делится на 125 число, образованное тремя последними цифрами.

    Все выше перечисленные признаки обобщены в виде таблицы. (Приложение 1)

    2.3 Признаки делимости на 7.

    1) Возьмем для испы-тания число 5236. Запишем это число следующим образом: 5236=5*1000+2*100+3*10+6=10 3 *5+10 2 *2+10*3+6 («систематическая» форма записи числа), и всюду основание 10 заменим основанием 3); 3 3 *5 + З 2 *2 + 3*3 + 6 = 168.Если получившееся число делится (не делится) на 7, то и данное число делится (не делится) на 7. Так как 168 делится на 7, то и 5236 делится на 7. 68:7=24, 5236:7=748.

    2) В этом признаке надо действовать точно так же, как и в предыдущем, с той лишь разницей, что умножение следует начинать с крайней правой и умножать не на 3, а на 5. (5236 делится на 7, так как 6*5 3 +3*5 2 +2*5+5=840, 840:7=120)

    3) Этот признак ме-нее легок для осуществления в уме, но тоже очень интересен. Удвойте последнюю цифру и вычтите вторую справа, удвойте результат и прибавьте третью справа и т. д., чередуя вычитание и сложение и уменьшая каждый резуль-тат, где возможно, на 7 или на число, кратное семи. Если окончательный результат делится (не делится) на 7, то и испытуемое число делится (не делится) на 7. ((6*2-3) *2+2) *2-5=35, 35:7=5.

    4) Число делится на 7 тогда и только тогда, когда на 7 делится знакопеременная сумма чисел, образованных последовательными тройками цифр данного числа. Как узнать, например, что число 363862625 делится на 7? 625-862+363=126 делится на 7, 126:7=18, значит, и число 363862625 делится на 7, 363862625:7=51980375.

    5) Один из самых старых признаков делимости на 7 состоит в следующем. Цифры числа нужно брать в обратном порядке, справа налево, умножая первую цифру на 1, вторую на 3, третью на 2, четвёртую на -1, пятую на -3, шестую на -2 и т.д. (если число знаков больше 6, последовательность множителей 1, 3, 2, -1,-3,-2 следует повторять столько раз, сколько нужно). Полученные произведения нужно сложить. Исходное число делится на 7, если вычисленная сумма де-лится на 7. Вот, например, что дает этот признак для числа 5236. 1*6+3*3+2*2+5*(-1) =14. 14: 7=2, значит и число 5236 делится на 7.

    6) Число делится на 7 тогда и только тогда, когда утроенное число десятков, сложенное с числом единиц, делится на 7. Например, 154 делится на 7, так как на 7 число 49, которое получаем по этому признаку: 15* 3 + 4 = 49.

    2.4.Признак Паскаля.

    Большой вклад в изучение признаков делимости чисел внес Б. Паскаль (1623-1662), французский математик и физик. Он нашел алгоритм для нахождения признаков делимости любого целого числа на любое другое целое число, который опубликовал в трактате "О характере делимости чисел". Практически все известные ныне признаки делимости являются частным случаем признака Паскаля: «Если сумма остатков при делении числа a по разрядам на число в делится на в , то и число а делится на в ». Знать его полезно даже в наши дни. Как же доказать сформулированные выше признаки делимости (например, знакомый нам признак делимости на 7)? Постараюсь ответить на этот вопрос. Но прежде условимся о способе записи чисел. Чтобы записать число, цифры которого обозначены буквами, условимся проводить над этими буквами черту. Таким образом, abcdef будет обозначать число, имеющее f единиц, е десятков, d сотен и т.д.:

    abcdef = a . 10 5 + b . 10 4 + c . 10 3 + d . 10 2 + e . 10 + f. Теперь докажу сформулированный выше признак делимости на 7. Мы имеем:

    10 9 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1

    1 2 3 1 -2 -3 -1 2 3 1

    (остатки от деления на 7).

    В результате, мы получаем сформулированное выше 5-е правило: чтобы узнать остаток от деления натурального числа на 7, нужно справа налево подписать под цифрами этого числа коэффициенты (остатки от деления): затем нужно умножить каждую цифру на стоящий под ней коэффициент и полученные произведения сложить; найденная сумма будет иметь тот же остаток от деления на 7, что и взятое число.

    Возьмем для примера числа 4591 и 4907 и, действуя, как указано в правиле, найдем результат:

    -1 2 3 1

    4+10+27+1 = 38 - 4 = 34: 7 = 4 (остаток 6) (не делится нацело на 7)

    -1 2 3 1

    4+18+0+7 = 25 - 4 = 21: 7 = 3 (делится нацело на 7)

    Этим способом можно найти признак делимости на любое число т. Надо только найти, какие коэффициенты (остатки от деления) следует подписывать под цифрами взятого числа А. Для этого нужно каждую степень десяти 10 заменить по возможности имеющим тот же остаток при делении на т, что и число 10. При т = 3 или т = 9 эти коэффициенты получились очень простые: все они равны 1. Поэтому и признак делимости на 3 или на 9 получился очень простой. При т = 11 коэффициенты тоже были не сложными: они попеременно равны 1 и - 1. А при т =7 коэффициенты получились сложнее; поэтому и признак делимости на 7 получился более сложный. Рассмотрев признаки деления до 100, я убедился, что самые сложные коэффициенты у натуральных чисел 23 (с 10 23 коэффициенты повторяются), 43 (с 10 39 коэффициенты повторяются).

    Все перечисленные признаки делимости натуральных чисел можно разделить на 4 группы:

    1группа - когда делимость чисел определяется по последней(им) цифрой (ми)- это признаки делимости на 2, на 5, на разрядную единицу, на 4, на 8, на 25, на 50.

    2 группа - когда делимость чисел определяется по сумме цифр числа- это признаки делимости на 3, на 9, на7, на 37, на 11 (1 признак).

    3 группа - когда делимость чисел определяется после выполнения каких-то действий над цифрами числа- это признаки делимости на 7, на 11(1 признак), на 13, на 19.

    4 группа - когда для определения делимости числа используются другие признаки делимости- это признаки делимости на 6, на 15, на 12, на14.

    Экспериментальная часть

    Опрос

    Анкетирование проводилось среди обучающихся 6-х, 7-х классов. В опросе приняли участие 58 обучающихся МОБУ Караидельская СОШ № 1 МР Караидельский район РБ. Им было предложено ответить на следующие вопросы:

      Как вы думаете, существуют ли другие признаки делимости отличные от тех, которые изучались на уроке?

      Есть ли признаки делимости для других натуральных чисел?

      Хотели бы вы узнать эти признаки делимости?

      Известны ли вам какие-либо признаки делимости натуральных чисел?

    Результаты проведенного опроса показали, что 77% опрошенных считают, что существуют и другие признаки делимости кроме тех, которые изучаются в школе; Так не считают - 9%, затруднились ответить - 13% опрашиваемых. На второй вопрос «Хотели бы вы узнать признаки делимости для других натуральных чисел?» утвердительно ответили 33%, дали ответ «Нет» - 17% респондентов и затруднились ответить - 50%. На третий вопрос 100% опрашиваемых ответили утвердительно. На четвертый вопрос положительно ответили 89%, ответили «Нет» - 11% обучающихся, участвовавших в опросе в ходе проведения исследовательской работы.

    Заключение

    Таким образом, в ходе выполнения работы были решены поставленные задачи:

      изучен теоретический материал по данному вопросу;

      кроме известных мне признаков на 2, 3, 5, 9 и 10, я узнал, что существуют еще признаки делимости на 4, 6, 7, 8, 11, 12, 13, 14, 15, 19 и т.д.;

    3) изучен признак Паскаля - универсальный признак делимости на любое натуральное число;

    Работая с разными источниками, анализируя найденный материал по исследуемой теме, я убедился в том, что существуют признаки делимости и на другие натуральные числа. Например, на 7, 11, 12, 13, 14, 19, 37, что и подтвердило правильность выдвинутой мной гипотезы о существовании других признаков делимости натуральных чисел. Также я выяснил, что существует универсальный признак делимости, алгоритм которого нашел французский математик паскаль Блез и опубликовал его в своем трактате «О характере делимости чисел». С помощью этого алгоритма, можно получить признак делимости на любое натуральное число.

    Результатом исследовательской работы стал систематизированный материал в виде таблицы «Признаки делимости чисел», который можно использовать на уроках математики, во внеклассных занятиях с целью подготовки учащихся к решению олимпиадных задач, при подготовке обучающихся к ОГЭ и ЕГЭ.

    В дальнейшем предполагаю продолжить работу над применением признаков делимости чисел к решению задач.

    Список использованных источников

      Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика. 6 класс: учеб. для общеобразоват. учреждений /— 25-е изд., стер. — М. : Мнемозина, 2009. — 288 с.

      Воробьев В.Н. Признаки делимости.-М.:Наука,1988.-96с.

      Выгодский М.Я. Справочник по элементарной математике. - Элиста.: Джангар, 1995. - 416 с.

      Гарднер М. Математические досуги. / Под. Ред. Я.А.Смородинского. - М.: Оникс, 1995. - 496 с.

      Гельфман Э.Г., Бек Е.Ф. и др. Дело о делимости и другие рассказы: Учебное пособие по математике для 6 класса. - Томск: Изд-во Том.ун-та, 1992. - 176с.

      Гусев В. А., Мордкович А. Г. Математика: Справ. материалы: Кн. для учащихся. — 2-е изд.— М.: Просвещение, 1990. — 416 с.

      Гусев В.А., Орлов А.И., Розенталь А.В.Внеклассная работа по математике в 6-8 классах. Москва.: Просвещение, 1984. - 289с.

      Депман И.Я., Виленкин Н.Я. За страницами учебника математики. М.: Просвещение, 1989. - 97с.

      Куланин Е.Д.Математика. Справочник. -М.: ЭКСМО-Пресс,1999-224с.

      Перельман Я.И. Занимательная алгебра. М.: Триада-Литера,1994. -199с.

      Тарасов Б.Н. Паскаль. -М.:Мол. Гвардия,1982.-334с.

      http://dic.academic.ru/ (Википедии — свободной энциклопедии).

      http://www.bymath.net (энциклопедия).

    Приложение 1

    ТАБЛИЦА ПРИЗНАКОВ ДЕЛИМОСТИ

    Признак

    Пример

    Число заканчивается на чётную цифру.

    ………………2(4,6,8,0)

    Сумма цифр делится на 3.

    3+7+8+0+1+5 = 24. 24:3

    Число из двух последних его цифр нули или делится на 4.

    ………………12

    Число заканчивается на цифру 5 или 0.

    ………………0(5)

    Число заканчивается на чётную цифру и сумма цифр делится на 3.

    375018: 8-четное число

    3+7+5+0+1+8 = 24. 24:3

    Результат вычитания удвоенного последней цифры из этого числа без последней цифры делится на 7.

    36 — (2 × 4) = 28, 28:7

    Три его последние цифры числа - нули или образуют число, которое делится на 8.

    ……………..064

    Сумма его цифр числа делится на 9.

    3+7+8+0+1+5+3=27. 27:9

    Число оканчивается на ноль

    ………………..0

    Сумма цифр числа с чередующимися знаками делится на 11.

    1 — 8 + 2 — 9 + 1 — 9 = −22

    Две последние цифры числа делятся на 4 и сумма цифр делится на 3.

    2+1+6=9, 9:3 и 16:4

    Число десятков данного числа, сложенное с учетверённым числом единиц, кратно 13.

    84 + (4 × 5) = 104,

    Число заканчивается на чётную цифру и когда результат вычитания удвоенной последней цифры из этого числа без последней цифры делится на 7.

    364: 4 - четное число

    36 — (2 × 4) = 28, 28:7

    Число 5 и на 0 и сумма цифр делится на 3.

    6+3+4+8+0=21, 21:3

    Четыре его последние цифры числа - нули или образуют число, которое делится на 16.

    …………..0032

    Число десятков данного числа, сложенное с увеличенным в 12 раз числом единиц, кратно 17.

    29053→2905+36=2941→294+12=

    306→30+72=102→10+24=34. Поскольку 34 делится на 17, то и 29053 делится на 17

    Число заканчивается на чётную цифру и сумма его цифр делится на 9.

    2034: 4 - четное число

    Число десятков данного числа, сложенное с удвоенным числом единиц, кратно 19

    64 + (6 × 2) = 76,

    Число заканчивается на 0 и предпоследняя цифра четная

    …………………40

    Число, состоящее из двух последних цифр делится на 25

    …………….75

    Число делится на 30 тогда и только тогда, когда оно заканчивается на 0, и сумма всех цифр делится на 3.

    ……………..360

    Число делится на 59 тогда и только тогда, когда число десятков, сложенное с числом единиц, умноженное на 6, делится на 59.

    Например, 767 делится на 59, так как на 59 делятся 76 + 6*7 = 118 и 11 + 6*8 = 59.

    Число делится на 79 тогда и только тогда, когда число десятков, сложенное с числом единиц, умноженное на 8, делится на 79..

    Например, 711 делится на 79, так как на 79 делятся 71 + 8*1 = 79

    Число делится на 99 тогда и только тогда, когда на 99 делится сумма чисел, образующих группы по две цифры (начиная с единиц).

    Например, 12573 делится на 99, так как на 99 делится 1 + 25 + 73 = 99.

    на 125

    Число, состоящее из трех последних цифр делится на 125

    ……………375